
 Advanced search

Linux Journal Issue #120/April 2004

Features

Real-World PHP Security by Xavier Spriet
Learn the top four PHP security mistakes and the three key
techniques you can use to secure your PHP app.

SPF Overview by Meng Weng Wong
Spam, scams and worms all use e-mail forgery. Put a stop to it
with the new mark of quality for your domain.

Security Distribution for Linux Clusters by Ibrahim Haddad and
Miroslaw Zakrzewski

Extend Linux Security Modules to enforce security rules across
many systems.

Indepth

Constructing Red Hat Enterprise Linux v. 3 by Tim Burke
Behind the scenes, contentious IT firms have their say in a new
high-end distribution.

Samba Logging for Audit Trails by Edward S. Kablaoui
When you have high-security audit requirements, use the source
and add custom log entries.

Embedded

Driving Me Nuts by Greg Kroah-Hartman
Writing a Simple USB Driver

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/120/7237.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7327.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/6943.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7288.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7251.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7353.html

Toolbox

At the Forge COREBlog by Reuven M. Lerner
Kernel Korner The Hidden Treasures of iptables by Chris Lowth
Cooking with Linux Francois, Can You Keep a Secret? by Marcel
Gagné
Paranoid Penguin Application Proxying with Zorp, Part II by Mick
Bauer

Columns

Linux for Suits Showtime by Doc Searls
EOF SOLIS, a Brazilian Free Software Cooperative by Cesar Brod

Departments

From the Editor
Letters
upFRONT
From the Publisher
On the Web
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7346.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7180.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7354.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7347.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7352.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7081.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7366.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7339.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7340.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7308.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7364.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7365.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7363.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Real-World PHP Security

Xavier Spriet

Issue #120, April 2004

Understanding the most common security threats to PHP applications is the
first step to securing yours.

During the past two years, the core PHP developers have done an incredible job
of providing the PHP user community with powerful technology that has been
able to perform remarkably well in many environments. As Web applications
become more popular, Web developers must face an increasing amount of
possible security vulnerabilities that have the potential to compromise their
work seriously. Many tutorials, books and articles have been published as new
techniques are developed. These new emerging threats, however, have not
received the focus they deserve.

This article is aimed at professional and open-source PHP developers who must
provide a high level of security to their users or clients. The intent of this article
is not to provide the developer with a question-and-answer approach but to
help the developer identify possible security issues in their own applications
during the design process. In the long run, this process enables you, the PHP
developer, to respond to new security threats accordingly.

Many articles have covered the subject of secure PHP development, and the
same topics usually are covered by every article. Here, I quickly go over those
basic concepts because they are important, but I assume you are familiar with
this material so I won't spend too much time on it.

 register_globals

PHP provides users with a configuration directive called register_globals that,
when enabled, places every variable in the application in the global scope. This
means that variables passed to the Web server as POST, GET, cookies and
session all are placed in the same basket, providing a convenient way for the
developer to retrieve those values.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

By design, enabling this directive is likely to affect the overall security of your
application, because users gain direct access to the content of any variable you
may use in your application. PHP now ships with register_globals turned off by
default, and I strongly recommend leaving it at that setting for the sake of
security. The exception would be if your server also hosts legacy applications
that assume this directive is turned on.

 Cross-Site Scripting

Cross-site scripting (XSS) is a popular technique that allows the user to gain
control over the layout, content and overall reliability and security of Web
applications. PHP is not the only technology vulnerable to this technique,
mostly because it is not really a flaw in the language. Instead, it is more of a
concept pertaining to the design of Web applications in general.

Cross-site scripting exists in many different forms, but a popular method is to
inject HTML or JavaScript code in form fields in order to make your application
display content that otherwise should not be displayed. This concept illustrates
the importance of always filtering any kind of input for your application,
whether it comes from a user, another site or even from the database. The PHP
function htmlentities() is generally a good way of preventing this type of attack.

 GET Variables

Having the ability to provide users with a URL they can use to get back to where
they are later on is critical for most Web applications. But as a developer, it is
important to be able to determine what information the user should be able to
access in any possible way. By manipulating the content of the query string, the
user gains the ability to modify the content of the variables used by your
application.

Preventing this type of event from happening is more complex than simply
filtering the input, but this is still a step in the right direction. What is perhaps
the most reliable way to secure your applications against this type of attack is
setting up a robust data-flow scheme for your application and a solid error-
control system.

 SQL Injection

This type of malicious attack on a Web application can have devastating
consequences that go beyond the scope of most other attacks, such as cross-
site scripting, because it has the potential to destroy your database and its
content permanently and completely.

The concept of SQL injection is quite simple. Most Web applications accept
parameters as input from POST and GET variables and from cookies. This input
often is used inside an SQL query as a parameter, thus providing the user with
dynamic content. If the user has any idea of what your database looks like, they
technically should be able to alter the parameters you use to inject SQL
commands in to your query.

Let's look at a quick example. Your application accepts data from a form as
POST. The goal is to display x records from the database, where users can
modify x to fit their needs. Therefore, your form simply has a field called NUM
that provides your script with that value. Listing 1 illustrates this process. In this
case, a user could forge an HTML form that would send a carefully crafted value
that in turn, would empty your table.

Listing 1. Building an SQL Query in PHP Based on POST Variables

<?php
$query = "SELECT id, name FROM `records` LIMIT "
 . $_POST['NUM'];
$result = $db->select($query);
?>

Listing 2. A Malicious Form Used to Perform the SQL Injection Attack

<form action="example.com/form.php" method="POST">
<input type="text" name="NUM"
 value="5; DELETE FROM `records`">
<input type="submit">
</form>

If the user decides to create a form like the one presented in Listing 2, your end
result would look like this:

SELECT id, name FROM `records` LIMIT 5;
DELETE FROM `records`

There obviously are simple ways to counter such attacks, but I have noticed
that a large number of applications have no facility to protect themselves from
this type of attack.

In our particular example, calling the intval() function to convert NUM to an
integer would have provided a decent level of security against SQL injection.
However, it is important to understand that developers can't think about every
single parameter used in all of their SQL queries. Therefore, what you really
need to do is streamline this process in your applications.

Because modern Web-based applications commonly tend to gravitate toward a
core module or some kind of centralized switchboard system, it becomes easy
to implement such a facility application-wise. The details of the implementation
of streamlined facilities for your applications are covered later in the article. For
now, take note of the following quick tips that will help you build your own
solution:

1. Use regular expressions to filter SQL commands: this method is not
appropriate if you intend to accept text from users, but it does a good job
of stopping SQL injection by filtering out SQL keywords (Listing 3).

2. Use assertions: assertions are covered in more detail in later in this
article.

3. Escape strings: if you do not expect to be accepting binary data as input,
an important step in securing your input is the use of string escaping. In
the example above, escaping the string would not have helped, however;
many SQL injection attacks are based on exiting the SQL query
prematurely and injecting a new query inside. This is efficiently prevented
through the use of functions, such as mysql_escape_string().

Listing 3. A Simple “Harmful SQL Commands” Filter

<?php
function filter_sql($input) {
 $reg = "(delete)|(update)|(union)|(insert)";
 return(eregi_replace($reg, "", $input));
}
?>

 Encryption

Sensitive information often is stored on database servers and other storage
facilities for later retrieval. At this point, it is critical to have at your disposal a
facility that allows you, as a developer, to secure that data at storage time and
retrieve the information you are looking for when you need it.

PHP offers an extension that allows developers to use the Mcrypt Library
(mcrypt.sf.net) to secure data by encrypting it and later decrypting it. The
documentation of the Mcrypt extension for PHP is located at www.php.net/
mcrypt, and it should be studied carefully before implementation.

The Mcrypt extension supports an impressive array of algorithms, including
triple-DES, Blowfish, Twofish and Two-Way. Using the Mcrypt extension is not a
very intuitive process if you are not familiar with encryption; it can become
quite confusing because of the variety of block algorithms and encryption
modes available. Refer to Listing 4 for a sample of what the Mcrypt extension
offers and how to use it.

http://mcrypt.sf.net
http://www.php.net/mcrypt
http://www.php.net/mcrypt

Listing 4. Typical Usage of the Mcrypt Extension

<?php
/* Create your key at random
 but keep it handy as you
 will use it to decrypt later
*/
$key = "AOQKJLCLIGAKJHSD
 <NKLXASLUIHJKHAS
 OIUDSgfuyJKLBLKU";

$string = $_POST['password'];

/* First, you must open the encryption module
 provided by Mcrypt */
$mod = mcrypt_module_open ('blowfish','','ecb','');

/* You must then create an Initialization Vector
 based on a size and a source.
 Your source can be custom, but some constants
 are available.
 Defining the size of the vector depends on the
 module you are using */
$iv_size = mcrypt_enc_get_iv_size($mod);

/* The initialization vector will be based on $size
 characters from the source /dev/random in our
 example */
$iv = mcrypt_create_iv($iv_size,MCRYPT_DEV_RANDOM);

/* The next step is to ensure that your key is not
 too big and truncate it if necessary */
$max_key_size = mcrypt_enc_get_key_size($mod);
$key = substr($key,0,$max_key_size);

/* You must then initialize the encryption
 mechanism through mcrypt_generic_init */
mcrypt_generic_init ($mod,$key,$iv);

/* You can now encrypt your data through
 the use of mcrypt_generic. The function
 will return your encrypted data */
$encrypted = mcrypt_generic($mod,$string);

/* Once you have finished using Mcrypt, you
 must free the buffers used during the process */
mcrypt_generic_deinit ($mod);

/* Finally, you must close the encryption module
 you have used*/
mcrypt_module_close ($mod);

/* Now here is how we can decrypt our data: */
$padded = // see next line
mcrypt_decrypt('blowfish',$key,$encrypted,'ecb',$iv);
/* At this point, our decrypted string has been
 zero-padded so we need to remove the extra \0s */
$plain = str_replace("\0","",$padded);
echo "Encrypted string: $encrypted
";
echo "Decrypted string: $plain
";
?>

 Assertions

Assertions provide the PHP developer with a way to implement error control
and preserve the integrity of data. This is not a security-related feature of PHP,
and it is implemented in many mainstream languages, such as C or Python, so

why am I bringing it up now? Simply put, error control is the first step in
providing efficient security for your users or your clients.

Assertions are implemented in PHP through the use of two functions,
assert_options() and assert(). The former should be called in your application's
initialization or configuration file, and the latter should be implemented
anywhere in your code where you need to enforce the validity of your input.
Listing 5 demonstrates how assertions can be used to create an error-control
system that generates a simple report when an assertion fails.

Listing 5. Error Reporting through Assertions

<?php

/* You can toggle assertions throughout your entire
 application by switching ASSERT_ACTIVE to 1 or 0
*/
assert_options(ASSERT_ACTIVE,1);

/* We do want the application to exit when an
 assertion fails. (in this example)
*/
assert_options(ASSERT_BAIL,1);

/* In our example, we will do the error reporting
 ourselves so we turn off the default warnings
*/
assert_options(ASSERT_WARNING,0);

/* display_error will be the name of our custom
 function that will be called if an assertion
 fails
*/
assert_options(ASSERT_CALLBACK, "display_error");

$email = strtolower($_POST['email']);
$parts = array();

// Building your regular expression
$regex = "^([.\'a-z0-9]+)@([.\'a-z0-9]+)$";

/* Checking for valid format and splitting
 the email address at the same time
 Note the special formatting. Everything
 is in quotation marks and the error is
 commented. We will extract this error
 later through regular expressions.
*/
assert("ereg(\$regex, \$email, \$parts); /*
 Invalid email address: $email */");

/* This block will not be executed if the
 assertion fails so we can safely go on */
$username = $parts[1];
echo "Welcome home, " . $username;

// This is our ASSERT_CALLBACK function
function display_error($file, $line, $error) {

 // This block will extract the comment message
 $regex = "(.*)/* (.*)*/";
 $parts = array();
 ereg($regex, $error, $parts);
 $msg = $parts[2];

 // And we can output a nice little report
 echo "

 <table bgcolor=\"#bbbbee\">
 <tr><td colspan='2' align='center'>
 Error Report
 </td></tr>
 <tr><td>File:</td><td>$file</td></tr>
 <tr><td>Line:</td><td>$line</td></tr>
 <tr><td>Message:</td><td>$msg</td></tr>
 ";

}

?>

Figure 1. A Sample Report Generated by Listing 5

The PHPUnit Project is a complete unit testing suite freely available to PHP
developers and is based on what we have just done. The PHPUnit's home page
is located at phpunit.sf.net.

 Data Flow

If you have worked on many different Web projects, chances are you have
started using a common structure upon which to base your new projects or you
have developed your own. There are many ways to centralize data
management in your application, and depending on the set of requirements
that define your project, some models are more appropriate than others. In the
next few paragraphs, I introduce a simple design template that gives the
developer a sufficient amount of scalability and flexibility for most enterprise-
grade projects.

What you need to do at this point is implement a way to centralize all your
input and force it to go through a filtering facility. Doing so gives you the
simplicity you need to implement additional functionality in a modular fashion.
In our example, we use the following file hierarchy:

• /index.php: only file in root.
• /lib: libraries, protected by .htaccess.
• /lib/config.inc.php: configuration file.
• /tpl: templates, protected by .htaccess.
• /doc: project and APIs documentation.
• /images.
• /classes: classes, protected by .htaccess.

http://phpunit.sf.net

As illustrated in Figure 2, your application's core is the index.php file, and it has
direct access to any library, template, class or configuration file, but the user
never has access to those files.

Figure 2. Application Core

Let's follow, step-by-step, the design illustrated in Figure 2 by taking the
example of a user logging in to the application.

1. The user queries index.php with no parameters. Index creates a buffer
and passes it over to the switchboard that calls the default module. This
module uses a template to display the default page of the application.

2. The user fills in the authentication form and submits the form. The form
redirects its output to something like ?
module=account&action=login. The switchboard calls the login
function of the account module, which is simply an interface to the user
class. The function instantiates an object of the user class. This object is

https://secure2.linuxjournal.com/ljarchive/LJ/120/7237f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7237f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7237f2.large.jpg

an interface between your module and the database, and it performs the
query.

3. The data is sent back from the database to the object and from the object
to the module, which in turn, sets up the appropriate session variables,
calls the proper template and uses it to modify the buffer. It then sends
the response message to the index.

The data flow in this particular model may seem a little confusing at first, but it
really is simple. User input is passed quickly to the appropriate module, and
error control is implemented on the switchboard level. Other types of inputs
are database access and filesystem access, and they are filtered by their
appropriate classes. Every class extends a special skeleton class that provides
the input filtering facility, so none of the classes have to worry about this.

This model is efficient as it provides a scalable and robust architecture, but
keep in mind that many other interesting models are available. For example,
you may want to look at the Phrame Project (phrame.sf.net), which provides an
implementation of the Model2 approach, a derivative of MVC (ootips.org/mvc-
pattern.html).

 Safe Mode

PHP's Safe mode is something you should learn to work with whether you are a
PHP developer or a system administrator. Safe mode is a set of configuration
options that allow the system administrator to alter the behavior of the PHP
interpreter by implementing security measures. From a system administrator's
point of view, this means you must learn how to implement this feature
properly, without making it impossible for developers to set up their
applications on your server. From a developer's point of view, you must learn
what possibly could get broken in your application if this feature is turned on.

Turning safe_mode on makes sense if you manage a shared server that serves
PHP applications and the PHP developers using this server are not trusted.
Enabling safe_mode in your php.ini file effectively makes any file-related
operation in any of your scripts impossible unless the UID of the owner of the
file is the same as the UID of the running script. PHP also gives you the ability to
change this policy while safe_mode is on by turning on the safe_mode_gid
option. In this case, PHP checks for the GID of the files you are trying to work
with instead of their UID.

It also is good practice to not let your users execute any system binary they
want; safe_mode_exec_dir comes into play here. This priceless feature lets you
tell PHP not to perform any binary execution, through exec() or any other
function, unless the binary is located in the safe_mode_exec_dir, such as /usr/
local/php/bin.

http://phrame.sf.net
http://ootips.org/mvc-pattern.html
http://ootips.org/mvc-pattern.html

Once you have familiarized yourself with the restrictions implemented by PHP
when safe_mode is enabled, you should be able to develop software that
doesn't break when it's run on servers with this directive enabled. Many ISPs
use safe_mode. The simple guidelines to follow are:

• Try to limit file operations, whether read or write, to the files you have
provided with your application.

• Do not rely on external software to be installed or executable by your
script unless your project is running on only your servers.

System administrators also have at their disposal other powerful tools to
ensure the overall security of their systems. These tools include
disable_functions that prevent specified functions from being called, as well as
options such as open_basedir, which limit any file operation to a specific
directory.

The PHP documentation team has provided an extensive amount of literature
on the subject. They also have provided documentation for every aspect of
safe_mode and related functions and directives.

Resources

Mcrypt Extension: php.net/mcrypt

Mcrypt Project: mcrypt.sf.net

The MVC Paradigm: ootips.org/mvc-pattern.html

PHP Documentation: php.net/manual/en

PHP Security: www.php.net/manual/en/security.index.php

The PHPUnit Project: phpunit.sf.net

The Phrame Project: phrame.sf.net

Safe Mode: www.php.net/manal/en/features.safe-mode.php

Xavier Spriet has been developing software in PHP for the past four years. He is
the lead developer at eliquidMEDIA International. You can reach Xavier at
xavier@wuug.org.

Archive Index Issue Table of Contents

 Advanced search

http://php.net/mcrypt
http://mcrypt.sf.net
http://ootips.org/mvc-pattern.html
http://php.net/manual/en
http://www.php.net/manual/en/security.index.php
http://phpunit.sf.net
http://phrame.sf.net
http://www.php.net/manal/en/features.safe-mode.php
mailto:xavier@wuug.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

 SPF Overview

Meng Weng Wong

Issue #120, April 2004

You can help eliminate the spam problem by making it easy to detect forgeries.
Protect your e-mail address reputation with a simple DNS technique.

SPF is an emerging antiforgery standard that aims to prevent worms, viruses
and spam from forging arbitrary e-mail addresses as the envelope sender in
SMTP. SPF has two parts: domain administrators need to publish SPF records in
the DNS, and e-mail administrators need to install SPF-enabled MTAs to read
those records. SPF records indicate the servers from which a domain sends
outbound mail. Mail coming from anywhere else is considered forged.

This article, the first of a two-part series, explains the concepts and trade-offs
involved in SPF protection and shows DNS administrators how to set up SPF
records. The second article is aimed at showing e-mail administrators how to
activate SPF protection in their MTAs. This article was written in early January
2004 and reflects the state of the Internet current at that time.

 Worms, Viruses, Joe-Jobs and Envelope Sender Forgery

I got spam from myself today. I founded pobox.com, and I'm an e-mail guy. So I
pressed H for headers and read the Received lines. Just as I thought: like much
of the spam I receive, this one came from a broadband machine. It's probably
an old PIII running Windows 2000 unpatched, used for gaming and MP3s,
quietly humming at the foot of someone's bed, draped in dirty underwear.
Maybe it lives on a potato farm in Idaho; maybe it looks out over Central Park.
Either way, it's probably infected with a variant of the Sobig virus, written under
contract to a spammer. The machine's rightful owner has no idea he's infected,
no idea his machine has been sending a few hundred spams and viruses every
hour since that forgotten day long ago when he clicked on that weird
attachment that didn't open.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Spam messages disguise their origins. Spammers use compromised machines
to send the spam. They forge message headers. They fake Received headers to
throw off the scent, make up bogus Subjects to trick Bayesian filters and forge
From lines pretending to be PayPal or eBay.

Spammers also forge the return path. When messages are undeliverable, they
bounce back to the sender whose address is in the return path. Not the From:
address in the message headers, but the return path of the SMTP envelope, the
RFC2821 MAIL FROM. Often, spamware uses lists of old addresses, or they
simply guess common user names or launch a dictionary attack. The result is a
lot of bad addresses and a lot of bounces.

Spammers don't want those bounces. They'd rather somebody else receive
them. So, they pick an address at random or use the recipient's address. That's
how they made it look like I got spam from myself. Sometimes they choose a
hated enemy and maliciously forge his address so he gets flooded with
thousands of bounces.

In 1997, a spammer forged a return address at joes.com, which then was
flooded by so many bounce messages it went down for ten days—and gave the
world the term joe-job. Hotmail and AOL get joe-jobbed every day: a lot of
spam pretends to be from AOL but doesn't really come through their servers.
Under conventional SMTP, AOL can't do anything about it. If you put the AOL
logo on a T-shirt and tried to sell that shirt, AOL's lawyers would have you
ceasing-and-desisting in a heartbeat. But spammers forge @aol.com every day.
They can get away with it because they use SMTP.

The Simple Mail Transfer Protocol (SMTP) was designed more than 20 years ago
—a kindlier, gentler time. The entire Internet was only a handful of research
institutions. SMTP has served us well since then, but it's beginning to show its
age.

SMTP is open and trusting. Its rules are relatively lax. You can assert any
envelope sender and make up all the headers you want. You could argue today,
though, that a protocol that lets joe-jobs happen is a little too open, a little too
trusting. That's where sender authentication comes in. SPF tightens the rules.

 Sender Authentication with SPF

When you send mail to a domain, your MTA does a DNS lookup (an MX query)
to find out to which server to route the mail. Such a server is called a mail
exchanger (MX). Small domains tend to have only one MX server. Big domains
tend to have more. Mail to a domain goes to its MX servers.

Now for the big idea. In 99% of all cases, when a domain sends mail, that mail
originates from a relatively small set of servers controlled by that domain. The
domain could designate those servers using the DNS, then announce that any
mail not received from those servers probably is forged. That's called a
designated sender scheme (Figure 1).

Figure 1. With SPF, one mail server can check whether another server really is associated with
the address the mail claims to be from.

Designated sender schemes are useful because they help fight forgery and are
easy to set up. After all, domain owners already know which servers send mail
from that domain. When I say send mail from that domain, I mean originate an
SMTP transaction where the MAIL-FROM envelope sender shows that domain.
I'm not talking about the From: header. This is an important distinction.

Mail from a domain tends to come from a small number of servers. That's true
for domains large and small. Mail from aol.com comes from AOL's servers. Mail
from my personal domain comes from my personal servers. It certainly doesn't
come from a machine covered in dirty underwear.

Many ISPs already are implementing these kinds of rules in a haphazard and
often slightly broken way. The problem is, one ISP doesn't know the insides of
another ISP, and it's easy to guess wrong. Maybe aol.com's mail servers also
originate mail for aol.net or vice versa. Wouldn't it be better if AOL themselves
announced their designated servers in a simple, flexible, extensible, open
format that everybody could use?

https://secure2.linuxjournal.com/ljarchive/LJ/120/7327f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7327f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7327f1.large.jpg

Well, they do. SPF is a standard, flexible, extensible, open format that
everybody can use. At the time of this writing, AOL recently had started
publishing their SPF record.

MTAs can interpret that record and use it to tell whether mail that claims to be
from @aol.com is a fake.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7327f2.large.jpg

https://secure2.linuxjournal.com/ljarchive/LJ/120/7327f2.large.jpg

Figure 2. SPF performs a simple DNS-based lookup for each incoming message.

All this rule tightening is purely voluntary: domains that don't publish SPF
records can continue to send mail as before. Some unusual domains might be
served better by not publishing SPF; it's up to them. But most domains should
want to use SPF.

To publish SPF, a domain has to add only one line to its zone file. That line is a
TXT record, and you can publish it today. Let's see what the TXT record looks
like.

 SPF by Example

Suppose example.com wants to publish SPF. It expects MTAs everywhere to
read its SPF record and use it to reject forgery attempts. It hopes SPF reduces
the volume of joe-job bounces and bogus abuse reports. So it adds the
following line to its zone file:

example.com. IN TXT "v=spf1 a mx ptr -all"

The v=spf1 version string identifies this as an SPF record. The -all means reject
all mail by default. Domains that don't send any mail, such as altavista.com, can
get by with simply v=spf1 -all. But if the domain does send mail, it declares
mechanisms that describe how legitimate mail should look. Mechanisms go in
the middle, before -all. The first mechanism to match provides a result for the
SPF query. -all always matches and so belongs at the end.

Basic SPF

A: the A mechanism means the IP address of example.com is permitted to send
mail from example.com. If you want to say the IP address of some-other.com is
permitted, you can say a:some-other.com. You can use as many A
mechanisms as you want.

MX: the MX mechanism means the MX servers for example.com all are
permitted to send mail from example.com. If you want to say the MX servers
for some-other.com are permitted, you can say mx:some-other.com. You
can use as many MX mechanisms as you want.

PTR: the PTR mechanism says if a host has a PTR record that ends in
example.com, it is permitted to send mail from example.com. This would be a
good choice for Yahoo, whose mail server names all end in yahoo.com. It would
be a bad choice for a broadband provider like Comcast. If you want to say
servers whose names end in some-other.com are permitted to send mail from

https://secure2.linuxjournal.com/ljarchive/LJ/120/7327f2.large.jpg

example.com, you can say ptr:some-other.com. You can use as many PTR
mechanisms as you want.

IP4: to say the class C network of 192.0.2.0 is permitted to send mail from
example.com, you would write ip4:192.0.2.0/24.

Mechanisms are interpreted left-to-right. Using v=spf1 a mx ptr -all
first would check whether the connecting client was found in the A record for
the domain or, failing that, in its list of MX servers. Then the MTA would check
to see whether the hostname of the client matched the domain. If none of the
mechanisms matched, -all would be evaluated, the result would be fail and the
MTA would be justified in rejecting the mail.

A, MX, PTR and IP4 are enough for the overwhelming majority of domains. The
setup wizard at spf.pobox.com/wizard.html can help you configure SPF for your
domain. But if your situation is complex, you can use the mechanisms
described in the “Advanced SPF” sidebar.

 Extensibility

SPF has a number of built-in mechanisms. The basic ones let you designate the
hosts that send mail from your domain. This works well for almost all domains
out there, because each domain's mail comes only from a small set of hosts.
But if mail from your domain is distinguished in some other way, say you
always sign it with S/MIME, instead of typing a or mx you can type smime.

Using designated sender mechanisms (A, MX, PTR and IP4) is one possible
approach to sender authentication. New sender authentication methods are
being developed. SPF is extensible, though, so it can work gracefully with them.
SPF plugins that understand future extension mechanisms will be able to
interpret them correctly. SPF plugins that don't understand those mechanisms
will return unknown, and your domain will be treated as though it did not have
an SPF record at all.

 Protecting Subdomains and MX Servers

Today, spammers forge domain names. Tomorrow, they might forge
hostnames. They might try to joe-job your laptop by making up
username@ibook.example.com. It's a good idea to protect your subdomains as
well. You should start with your MX servers and move on to other hosts with A
records. Here's why.

Bounce messages are sent with MAIL FROM: <>. The null sender address
ensures that bounces don't themselves bounce and create a loop. When SPF
sees the null sender address, it falls back to the hostname given in the HELO

http://spf.pobox.com/wizard.html

command. When your MTA sends a bounce message, it announces its
hostname in the HELO command it sends. If that hostname has an SPF A
mechanism listed, the message passes. So SPF prevents HELO forgery as well.

 Traveling Mailman and the Forwarding Problem

SPF was designed to give the greatest benefit for the least cost. It tightens the
rules in a way that makes it hard for bad people to do bad things, while not
bothering the good people who do good things. Even so, some power users
who have taken advantage of SMTP's lax rules may be inconvenienced by SPF.
This section describes the two problems SPF causes power users and offers
ways to work around them.

Most end users relay their outbound mail through their ISPs' SMTP servers.
Most modern clients also support SASL authentication or POP-before-SMTP for
users who need to phone home from outside the ISPs' networks. Users who
always send mail through their ISPs' SMTP servers are automatically SPF-
compliant and don't need to do a thing.

But some power users with an MTA on their laptop are used to originating mail
from random IP addresses, bypassing their ISPs' SMTP servers entirely. SPF
accommodates these users: the advanced mechanism (see the “Advanced SPF”
sidebar) is a way to exempt certain users from being required to use their ISPs'
SMTP servers. They can keep doing what they want.

Advanced SPF

Exists: the Exists mechanism takes an argument that expands to a domain
name, and you can use macros. For example, exists:%{ir}.%
{l}._spf.example.com might expand to
2.2.0.192.ceo._spf.example.com. An SPF client would perform an A
query on the expanded domain name, and if it got back any A record (for
example, 127.0.0.2) Exists would result in a pass. You could use this technique
to allow the special user ceo@example.com to send mail from a particular host,
say 192.0.2.2, by creating an A record corresponding to the domain name
above. Some people have written custom DNS servers to handle complex Exists
queries. With Exists, the sky's the limit.

Include: if you send mail through another organization's servers, you should
use the Include mechanism to point to their domain, so the SPF record is pulled
in and expanded. For example, a vanity domain might use include:isp.com
if it sends mail through ISP.com's mail servers. Any server permitted to send
mail for ISP.com then is permitted to send mail for the vanity domain. You can
include multiple other domains.

The modifiers Redirect and Exp: modifiers are different from the other
mechanisms we've seen so far; they use equal signs instead of colons. Although
mechanisms can repeat, you can have only one modifier per SPF record.
Redirect is a modifier that works like Include, except the original query is
replaced completely by the new query. Exp lets you define an explanation
string. If an MTA rejects a forgery attempt, the explanation string appears in the
SMTP error message that goes back to the original sender. You may have
legitimate users who aren't using your SMTP servers, and SPF quickly can find
out who they are. You also can set the explanation string to a URL that points to
further information on how to configure mail clients correctly. All these
mechanisms are described in detail at spf.pobox.com/mechanisms.html.

Some power users have a dozen or more addresses that forward all over the
place by using entries in /etc/aliases or .forward files. In classical forwarding,
the envelope sender remains unchanged while the recipient address is
rewritten. This becomes a problem, though, when the message arrives at the
destination—it still has the original sender address, and SPF tests fail.

The workaround is easy, however; you simply need to switch to remailing,
where the sender address changes as well. There are many ways to accomplish
this. Read the SPF FAQ (spf.pobox.com/faq.html#forwarding) to pick up the one
that's right for you. Most end users have nothing to do with forwarding; only
power users need to implement this workaround. If you have third-party
service through an alumni, vanity domain or other commercial forwarding
provider (such as pobox.com), you should expect them to implement remailing
for you.

 Stopping Spam: It's Part of the Solution

The primary goal of SPF is to stop forgery. I don't want to get any more spam
from myself, and I certainly don't want you to receive any spam that claims to
be from me. Worms and viruses tend to forge the envelope sender, too, and we
can block them with SPF. And, stopping forgery carries a bonus. When
spammers are forced to use their true names, we can figure out which domains
are legitimate and which are spammers. People already are doing this: a right-
hand side block list (RHSBL) is the domain name version of a DNS block list
(DNSBL). Spammers who aren't afraid of using their own domains end up on
RHSBLs quickly, and they can be blocked that way. In an SPF world, RHSBLs will
become more important and effective.

 Why Do People Use SPF?

Big domains, including ISPs, banks and well-known brands care about
controlling their trademarks. They have an obligation to protect their names.
Altavista.com publishes an SPF record as do AOL and Oxford. More domains

http://spf.pobox.com/mechanisms.html
http://spf.pobox.com/faq.html#forwarding

get on the bandwagon every day. Smaller domains publish SPFs simply because
they don't want to be joe-jobbed.

On the receiving end, ISPs upgrade their MTAs and turn on SPF simply because
it means less forgery—less spam, worms and viruses. Their bandwidth costs go
down, too, because SPF lets them cut off the spammer before data is
transmitted. They don't have to perform any cryptography or verify any
signatures. SPF saves money.

 Adoption

By the time this article is published, SPF support should be either bundled in or
available as a downloadable plugin for the latest versions of SpamAssassin,
Postfix, Sendmail, Exim and qmail. Commercial antispam vendors have
committed to support SPF; Declude JunkMail, for one, reports that SPF is
successfully blocking spam in the field.

If all goes well, the SPF standard will be published as an RFC in the near future.
But thousands of domains, including some quite large ones, already publish
SPF records. There's no reason to wait; you should publish SPF today.

SPF and Conventional Antispam Methods

DNS blacklists or blocklists (DNSBLs): IPv4 space is 32 bits wide; 232 is about 4.2
billion—4.2 billion grains of sand would just about fill a pickup truck. Imagine
trying to paint each individual grain black or white. IP-based blacklists are a
valiant effort, but they operate at too low a level. A good DNSBL has to decide
whether an IP address is spammy and get it right for each of the 4.2 billion IP
addresses. No wonder DNSBLs come and go—their maintainers burn out and
give up.

Right-hand side blacklists: RHSBLs use domain names, whereas DNSBLs use IP
addresses. Domain names are a much better way to identify entities on the
Internet, but RHSBLs haven't been quite as popular as DNSBLs. Why not? Spam
doesn't come from spammer.net. It's forged from yahoo.com. That's why SPF
helps: if spammers send mail with their true names, blocking them becomes
trivial.

Address verification: at MAIL phase, you can check the validity of the envelope
sender by attempting to send a test message to it. If the test comes back user
unknown, you might not want to accept the message. This is useful because
spammers often make up addresses at random. But as address verification
becomes more common, spammers can be expected to forge actual addresses
—all the more reason to use SPF.

Signature solutions: PGP/GPG and S/MIME users sign their messages.
Recipients can check signature validity by downloading keys from a key server.
Other schemes have been proposed in which the DNS itself acts as the
repository for public keys. These solutions are good because .forward files
continue to work without modification. They are bad, however, because a
message has to cross the pipe, costing bandwidth and CPU, before its
legitimacy can be determined. In any case, a domain that uses these
mechanisms still can use SPF to announce that any messages without a
signature should be rejected.

Challenge/response: you don't want to send challenges to spam, especially not
forged spam. If SPF tells you a sender address definitely was forged, you can
junk the message without bothering to challenge it.

Meng Weng Wong is founder and CTO of pobox.com, the e-mail-forwarding
company, which celebrates its tenth anniversary this year. He is working on a
science-fiction novel set on a planet where traditional fantasy magic turns out
to be implemented, following Clarke's famous dictum, using nanotechnology.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://pobox.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Security Distribution for Linux Clusters

Ibrahim Haddad

Miroslaw Zakrzewski

Issue #120, April 2004

Here are the kernel mechanisms used in DSM to embed security information
into IP messages in a transparent way.

This article is a follow-up to previous articles in LJ that discuss the Distributed
Security Infrastructure (DSI) and the Linux Distributed Security Module (DSM)
[see “Linux Distributed Security Module”, LJ, October 2002, available at /article/
6215, and “DSI: a New Architecture for Secure Carrier-Class Linux Clusters”,
available at www.linuxjournal.com/article/6053]. In this article, we focus on how
we used IP options in DSM to send security information in a distributed
environment for the process level of security. We discuss network buffer
handling, adding hooks into the kernel, IP options and modifying IP headers.
We then cover the network hooks in DSM and present some early performance
results.

 The DSI Project

The Open System Lab at Ericsson Research started the Open Source DSI Project
to design and develop a cluster security infrastructure targeted at soft, real-
time telecom applications running on Linux carrier-grade clusters. These
clusters are expected to operate nonstop, regardless of any hardware or
software errors. They must allow operators to upgrade hardware and software,
kernel and applications, during normal operations, without any scheduled
downtime and without affecting the offered services.

DSI originally was designed to offer carrier-grade characteristics, such as
reliability, scalability, high availability and efficient performance. Furthermore, it
supports several other important features, including a coherent framework, a
process-level approach and support for both preemptive security and dynamic
security policies.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/102/6215.html
https://secure2.linuxjournal.com/ljarchive/LJ/102/6215.html
http://www.linuxjournal.com/article/6053

One important feature of DSI is its process-level access control. Currently
implemented security mechanisms are based on user privileges and do not
support authentication checks for interactions between two processes
belonging to the same user, even if the processes are created on remote
processors. For telecom applications, only a few users run the same application
for a long period of time without any interruption. Applying the above concept
grants the same security privileges to all processes created on different nodes,
which leads to no security checks for many actions through the distributed
system. The granularity of the basic entity for the above security control is the
user. For carrier-class applications, this granularity is not sufficient, and the
need for a more fine-grained basic entity, the individual process, is required
and thus supported in DSI.

 The Distributed Security Module

The DSM is a core component of DSI that provides the implementation of
mandatory access control within a Linux cluster. The DSM is responsible for
enforcing access control and providing labeling for the IP messages with the
security attributes of the sending process and node across the nodes of the
cluster.

The DSM is implemented as a Linux module using the Linux Security Module
(LSM) hooks. The development started using Linux kernel 2.4.17 along with the
appropriate LSM kernel patch. The implementation was based on CIPSO and
FIPS 188 standards, which specify the IP header modification.

One important aspect of the DSM implementation is its distributed nature.
Access control in a cluster can be performed from a subject located on one
node to a resource located on another node. Therefore, a need exists to
transfer the security information between the nodes in the same cluster. The
distributed nature of DSM provides location transparency of the security
resources in the cluster from the security point of view.

 Network Buffer Handling

Here, we briefly discuss the topic of the network buffer handling to provide a
better understanding of how security information is embedded into the
network packet. We describe how the kernel handles network buffers starting
from the application layer down to the hardware layer and vice versa.

Figure 1. Network Packet Flow in the Kernel

Figure 1 shows the flow of the network packet in the kernel. Packet handling
occurs in two cases, the incoming packet and outgoing packet. The outgoing
network packet is handled as follows, starting from the application layer: the
application prepares the data to be sent on the network; the application issues
a system call to the kernel to send a packet; the packet, in the form of an
sk_buff structure, goes through filters and routing functions inside the kernel;
and the packet then is passed to the network driver that sends it to the network
card (DMA).

The incoming network packet, starting from the network card, begins with the
network card capturing the network packets either with its own address or the
broadcast address; it then reads them to the network memory and generates
an interrupt. The interrupt service routine, which is triggered by the hardware
interrupt and is a part of the network card driver that runs inside the kernel,
allocates an sk_buff and moves the data from the card memory into this buffer
(DMA). Next, the packet is put on the CPU queue for upper-layer processing,
and the processing is deferred to a later time when interrupts are enabled.
Finally, the packets go through the filters and the routing functions and are
passed to the application layer.

Based on the generic information on how the network buffers are handled in
the Linux kernel, we now demonstrate how this information can be used to
extend the kernel security. We look into the hooks added to the IP routing
functions that allow us to manipulate the IP packets and add extra security to
the IP messages.

 Adding Network Security Hooks

The security module can influence the routing decision based on the security
hook implementation. A few things need to be remembered when
programming the routing hooks, because those hooks are executed as normal
kernel functions for every packet coming in and out the kernel.

A module that registers a function must specify the priority of the function
within the hook. The net filter hooks are called from the kernel code in the
order of priorities. The user functions are free to manipulate the IP packet. The
user function must return one of the following values in order for the
networking code to decide what to do with the packet:

1. NF_ACCEPT: do nothing and let the packet go through the network stack.
2. NF_DROP: drop the packet. The packet is not passed for further

processing.
3. NF_STOLEN: the packet has been taken. The packet is not passed for

further processing.
4. NF_QUEUE: queue the packet for user-space handling.
5. NF_REPEAT: call this hook again.

This function shows us how the packet is manipulated before it enters the
system and before it is sent out. What we are still missing is: what kind of
information or options can we add to the packet? How? And, will the changes
coexist with the current implementation? We answer these questions in the
following sections.

 IP Options

A little-known fact about Internet Protocol is that an IP packet can contain a
variable amount of extra information (maximum of 40 bytes) following the
standard 20-byte header. These extension bytes are called IP options, and
some of the options are defined to carry security information.

Currently, the Internet Protocol includes two security options. One of them is
the DoD Basic Security Option (BSO—Option Type 130), which allows IP
datagrams to be labeled with security classifications. This option provides 16
security classifications and a variable number of handling restrictions. To

handle additional security information, such as security categories or
compartments, a second security option (ESO—Option Type 133) exists and is
referred to as the DoD Extended Security Option (ESO). The Defense
Information Systems Agency (DISA) is responsible for administrating the values
for the fixed fields within these two options.

Computer vendors now are building commercial operating systems with
mandatory access controls and multilevel security. These systems are no longer
built specifically for a particular group in the defense or intelligence
communities. They are generally available commercial systems for use in a
variety of government and civil sector environments.

The small number of ESO format codes cannot support all the possible
applications of a commercial security option. The BSO and ESO were designed
to support only the United States DoD. Commercial IP Security Option (CIPSO)
has been designed to support multiple security policies. The Internet draft
provides the format and procedures required to support a mandatory access
control (MAC) security policy.

The IP options used to label packets in our implementation are based on the
FIPS 188 standard and the Commercial IP Security Option (CIPSO) draft. In our
implementation, the IP header is changed using these standards, so we can add
the security information to the IP header and send it over the network.

 IP Options in DSM

The security information we want to transfer using IP options are Security ID
(SID) and Security Node ID (NID). The DSM modifies every IP packet by
supplying our security information as its IP options. Figure 2 shows the format
of the modified IP header.

Figure 2. Security Options in the IP Header

Here is a list of header options:

• CIPSO: one octet, with a value of 134.

https://secure2.linuxjournal.com/ljarchive/LJ/120/6943f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/6943f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/6943f2.large.jpg

• Length: one octet, the total length of the option including the type and
length fields. With the current IP header length restriction of 40 octets, the
value of this field must not exceed 40.

• Domain of Interpretation (DOI) Identifier: unsigned 32-bit integer. The
value 0 is reserved and must not appear as the DOI identifier in any CIPSO
option. Implementations should assume the DOI identifier field is not
aligned on any particular byte boundary.

• The CIPSO Domain of Interpretation (DOI) Field, or the Security Tag Set
Name under FIPS 188: set to hexadecimal 10001000. This DOI value was
selected arbitrarily as there currently is no relevant regulatory activity in
this area.

• Free Form: one octet, indicates that the following fields are new fields
undefined in the standard (therefore free). The value is 7.

• Length: one octet, indicates the total length of all tags.
• Tags (SID, NID): CIPSO uses sets of tags to contain the security information

relevant to the data in the IP packet. Each tag begins with a tag type
identifier followed by the length of the tag; it ends with the actual security
information to be passed.

• SID tag: tag id: one octet (value 3), tag length: one octet (value 6), tag data:
32-bit value of sid.

• NID tag: tag id: one octet (value 6), tag length: one octet (value 6), tag data:
32-bit value of nid.

• The IP option we use is CIPSO. Those fields are not defined by the
standard, so they can be used in the way we define.

• The Domain of Interpretation (DOI) and the Free Form (FIPS 188 standard)
mean that the following fields are new fields undefined in standard,
therefore they are free.

 DSM Network Hooks

We used the LSM security hooks in the DSM to add our security labels to the IP
messages. We now demonstrate how we achieved this by presenting an
example of an application that sends a packet over the network by writing to a
socket. The application uses some of the library calls. At one point, a system call
is generated that passes the message to the Linux kernel. The entry point to the
kernel socket implementation is the function sys_socketcall(), located in net/
socket.c. In the chain of calls, the sock_sendmsg() function (Listing 1) in net/
socket.c is executed.

Listing 1. sock_sendmsg()

sock_sendmsg
(struck socket *sock, struct msghdr *msg, int size)
{

 int err;
 struct scm_cookie scm;

 err =
 security_ops->socket_ops->sendmsg(sock,
 msg, size);
 if(err)
 return(err);
 ...

}

One of the first actions in the function is to execute the security hook
(security_ops->socket_ops->sendmsg(...)). This hook ends up in
the DSM socket hook that modifies the IP packet, as shown in Listing 2.

Listing 2. dsi_socket_sendmsg()

int dsi_socket_sendmsg(struct socket *sock,
 struct msghdr *msg, int size)
{
...

inode_security_t *isec;
struck sock sk;
struct ip_options *opt = NULL;
int optlen = NSID_BASE_LEN + NSID_SSID_LEN +
 NSID_NODEID_LEN; //8 +_6 + 6
unsigned char optptr[optlen];

 ...

 sk = sock->sk;
 opt = sk->protinfo.af_inet.opt;
 dsi_options_fill (isec, optptr, optlen);
 dsi_ip_options_get(&opt, optptr, optlen);
 opt = xchg(&sk->protinfo.af_inet.opt, opt);

...
}

The function dsi_options_fill sets up the security information to the buffer as
specified in the previous paragraph. Later, in subsequent functions, this
security information is attached to the IP message as options. The SID is
derived from the socket security ID, and the NID is global for the whole node—
there is no need to pass it as a parameter to the function.

After this action, the modified packet with the security information added is
forwarded for normal processing in the kernel and finally is sent over the
network. At the receiving side, the incoming messages are stored in the sk_buff
structures and preprocessed in a series of functions and hooks. One of these
functions is ip_options_compile (Listing 3) in /net/ipv4/ip_options.c, where the
options are processed.

Listing 3. ip_options_compile ()

int

ip_options_compile (struct ip_options *opt,
 struct sk_buff *skb)
{
unsigned char *pp_ptr;
unsigned char *optptr;

 ...

 case IPOPT_CIPSO:

 if(security_ops->ip_ops->decode_options(skb,
 optptr, &pp_ptr)
 goto error;
 break;
 ...
}

For the CIPSO case, the security hook decode_options is called. This hook is
replaced by the DSM dsi_decode_options hook, where the security parameters
(SID, NID) from the incoming packet are read and stored in the security
structure attached to this sk_buff. The sk_buff buffers, populated with the
security information, are attached to the receiving socket queue, where they
are waiting to be read by the receiving application. In order to read them, the
application issues the system call sys_socketcall (), as it did for the sending
packet. The call once again goes through the DSM security hook, where the
receiving socket security ID is validated against the sk_buff security of the
incoming packet. If the socket is not allowed to receive the packets with a given
security ID, then those packets are dropped. Listing 4 shows the kernel function
in include/net/sock.h.

Listing 4. sock_queue_rcv_skb ()

int
sock_queue_rcv_skb (struct sock *sk,
 struct sk_buff *skb)
{
int err=0;

 ...

 err=security_ops->socket_ops->sock_rcv_skb (sk,
 skb);

 if(err)
 return (err);
 ...
}

As we can see, the security hook sock_rcv_skb is called. This hook then is
replaced by the DSM function dsi_sock_rcv_skb when the DSM is loaded. In this
function, the security validation is performed. From the example code we can
see work needs to be done to manipulate the security labels.

 Performance Measurements

We performed several benchmarking tests in order to verify whether adding
options to the IP header affects the overall performance and by how much.
One test was to send a UDP packet between nodes of the cluster and measure
the performance degradation that consists of the packet security modification
on the sending side, including the packet security extracting on the receiving
side. The average overhead of adding extra security based on our
implementation is 30%. Most of the overhead (around 25%) is related to the IP
packet modification based on the IP security option. The remaining overhead
(around 5%) is contributed by the security hooks infrastructure in the Linux
kernel, such as the socket hooks. As we can see, most of the overhead is
related to the IP packet modification based on the IP options, with only a small
fraction of the overhead caused by the security hooks infrastructure.

Our future efforts will be directed at improving the IP modification algorithms
as we continue to use IP options as the security transport mechanism.

 Conclusion

By changing the IP options, we were able to distribute security information to
nodes of the cluster with the DSM. We have optimized the IP packet
modification and our primary results show significant improvements—the 30%
overhead has dropped to 14%. These performance results are promising, and
we see more opportunities for further optimizations to attain a lower overhead.
Nevertheless, the results demonstrate the challenges facing the development
of efficient distributed security. We hope you try out DSI and DSM and send us
your feedback.

Acknowledgement

David Gordon, co-op intern from Sherbrooke University, for his contributions to
DSM.

References

DSI and DSM Home Page: www.linux.ericsson.ca/dsi

FIPS 188: csrc.nist.gov/publications/fips/fips188.html

Linux Packet Filter: /article/4852 and /article/5617

LSM: lsm.immunix.org

Network Buffers: /article/1312

http://www.linux.ericsson.ca/dsi
http://csrc.nist.gov/publications/fips/fips188.html
https://secure2.linuxjournal.com/ljarchive/LJ/094/4852.html
https://secure2.linuxjournal.com/ljarchive/LJ/095/5617.html
http://lsm.immunix.org
https://secure2.linuxjournal.com/ljarchive/LJ/030/1312.html

Open System Lab: www.linux.ericsson.ca

SE Linux: www.nsa.gov/selinux

Ibrahim Haddad, contributing editor of LJ, is a researcher in the Research &
Innovation Unit at Ericsson Research in Montréal, Canada. He contributed to
two of Richard Peterson's books, Red Hat Linux Pocket Administrator and Red
Hat Enterprise Linux & Fedora Edition: The Complete Reverence (DVD edition),
published by McGraw-Hill/Osborne.

Miroslaw Zakrzewski works for Ericsson Canada in Montréal, developing the
new-generation CDMA systems. He can be reached at
Miroslaw.Zakrzewski@Ericsson.ca.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linux.ericsson.ca
http://www.nsa.gov/selinux
mailto:Miroslaw.Zakrzewski@Ericsson.ca
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Constructing Red Hat Enterprise Linux v. 3

Tim Burke

Issue #120, April 2004

Putting together a Linux distribution gets a lot more complicated when stacks
of requirements start arriving from hardware vendors and other partners.

Many people have little understanding of the behind-the-scenes efforts
required to construct an enterprise Linux distribution. The fact that this process
largely can be taken for granted is actually a compliment. This article offers a
glimpse into the methodology we used to deliver Red Hat Enterprise Linux v. 3
(Enterprise Linux v. 3). As you will see, we faced numerous challenges along the
way. Then again, if it would have been easy, it wouldn't have been so much fun.

Throughout this article, the focus is on how the release was put together. This
article primarily discusses the development of the kernel used in Enterprise
Linux v. 3. The kernel is only a fraction of an overall distribution, the portion
that controls the underlying hardware and system resources. The challenges
faced by the other teams, with projects such as compiler tools, the installer,
hundreds of application packages, documentation and testing, are equally
daunting. Each of these items was developed by gifted individuals.

Allow me to start by noting that we here at Red Hat have established strong
relationships with our key partners in the industry. Although partners'
anonymity is guarded here, I'm sure they can identify where they fit in to this
story and recognize that it's all in good humor.

 What Is an Enterprise Distribution?

High customer expectations have been set by the proprietary UNIX operating
systems, and customers planning to migrate from UNIX to Linux do not want to
adopt technology that cannot deliver the same level of robustness, quality,
support and compatibility. Business users demand stability and reliability. In
some cases this means bleeding-edge technology is not appropriate for
inclusion in a product. Users also want the ability to run across a wide range of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

architectures and hardware components, thereby realizing the Linux goals of
avoiding proprietary vendor lock-in. Support needs to be in the form of ongoing
maintenance for several years, including security and bug fixes, as well as
incremental hardware support and valuable, but not destabilizing, feature
enhancements.

 Requirement Gathering

The ball gets rolling on a new release by identifying the targeted feature set.
Next to strong opinions, the second most plentiful commodity at Red Hat is
feature requests. They come from all directions, such as insatiable independent
hardware/software vendors, demanding customers, both large and small, and
Red Hat's worldwide sales and service support organizations. Additionally, as
many ideas are generated within Red Hat engineering, ranging from
performance and usability enhancements to marketing proposals on how to
organize the product set.

Obviously, we don't have infinite developer resources, so the major challenge is
to choose the best of these ideas. Another key feature acceptance criteria is
conformance with upstream Linux direction, which is necessary for
compatibility and to remain true to the spirit of the kernel.org tree governed by
Linus Torvalds and containing contributions from around the world.

Here's a few examples of the challenging scenarios we face in requirements
gathering:

• We ask each of our partners to submit a reasonably sized top-ten list. One
partner's requirements came in the form of a binder that was two inches
thick. This became affectionately known as the bible. My first exposure to
the bible came when it was heaved onto my desk with a resounding thud.
When I saw that, I swear that my heart went thud, too.

• The more mathematically inclined partners do internalize the concept of a
top-ten list. However, most ended up using a tactic that those of you
familiar with TCP/IP networking should recognize—the sliding window
protocol. The way it works is as soon as any of your features have been
accepted, those pop off the top of the stack, freeing up space for features
11, 12 and 13 to all of a sudden become cataclysmic issues.

The following is a representative example feature list from a hardware vendor:

1. Support more than 32GB of memory on x86.
2. Support more than eight CPUs.

3. Support for our new XYZ100 series computers. (This is a thinly veiled
multiple feature request; behind it is a series of required device drivers,
PCI IDs and installer hooks.)

4. Updated I/O adapter driver. (This ultimately turns into differences of
opinions regarding to which newer version this refers).

5. Integrated support for the vendor's proprietary baseboard management
software. (A perennial list item, which consistently gets rejected to the
amazement of the requester.)

6. Compiler optimizations to match the latest chipsets.
7. USB support for our CD-ROM drive. (Needed because the drive is brain-

dead and doesn't conform to the spec—of course that subtlety is absent
in the initial feature request.)

8. Support for more than 128 disks.

Then, there's typically the following implied requirements:

• All of these feature requests apply to multiple architectures, including x86,
AMD64 and Itanium 2.

• Oh, by the way, we also want this feature backported to the prior
Enterprise Linux v. 2.1 release.

Countless external requests ask for either proprietary additions or hooks. In
the open-source tradition, this is something we consistently have to refuse.

For Enterprise Linux v. 3, the initial set of requested features was about 500
items. Each of these was entered into our feature-tracking tool called
Featurezilla, which actually is a derivative of the Bugzilla bug-tracking tool.
Figure 1 shows several items in Featurezilla. To show that the jabs go both
ways, one partner has a business manager whose name is Paul, name changed
to protect the innocent. He manages a list as a text file, but back at his
company, the list is referred to as Paulzilla.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7288f1.large.jpg

Figure 1. The feature-tracking tool Featurezilla lists feature requests and their status.

We had countless tortuous internal meetings to prioritize and slog through the
full set of 500 items. From that prioritized list, the engineering managers went
off to try to get the list down to a manageable set that is humanly achievable by
their team members. Ultimately, the list is negotiated down to something that
vastly exceeds anything reasonably achievable by the development team. But,
that's the Red Hat way, and it's only the beginning of the story.

 Red Hat Enterprise Linux v. 2.1 Maintenance Pulls

To keep things interesting, in addition to having to develop to an aggressive
schedule for Red Hat Enterprise Linux v. 3 development, a large amount of
effort also is required to support the Enterprise Linux v. 2.1 maintenance
stream. By the time Enterprise Linux v. 3 shipped, v. 2.1 had been out for 15
months. Because we provide a five-year life cycle for releases in the Enterprise
Linux family, we simply cannot dump Enterprise Linux v. 2.1 support and
maintenance work. The requirements demanded by our partners in the
maintenance stream form an interesting paradox. When it comes to the
objectives of the maintenance stream, it seems that all partners and high-
profile customers speak out of both sides of their mouth. “Don't change
anything! I'm using this release in production. Don't upset the apple cart”, is
followed by “I really need this feature immediately. Hurry up and give it to me,
but don't put anything else in.”

Ultimately, it all boils down to a careful case-by-case risk/benefit assessment.
Internally, we review features and bug-fix proposals among the engineering
ranks. It is well beyond my literary abilities to convey the strong-willed and
passionate debates conducted over incorporating features or bug fixes that
straddle the risk/benefit fence.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7288f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7288f1.large.jpg

 Red Hat Enterprise Linux v. 3 Kernel Development

Some people have the mistaken impression that Red Hat simply pulls together
a random collection of bits and pieces from the upstream Open Source
community, slaps the Red Hat name on it and calls it a product. Truth be told,
Red Hat engineers contribute a substantial percentage of upstream (for
example, 2.4 and 2.6) kernel development. The productivity, breadth of
knowledge and ability to be on top of a torrent of internal and external
communication demonstrated by these kernel developers is stunning. They
truly are world class and humbling to be among. But don't tell them that, lest it
goes to their heads.

Figure 2. Kernel developers at Red Hat, left to right: Larry Woodman, Dave Anderson and Rik
van Riel.

In addition to the sizable upstream enhancements that get pulled back into the
Enterprise Linux kernel, a large set of enhancements is developed in-house to
meet the product requirements. As an open-source company, all of the kernel
enhancements are available to the community at large. The vast majority of
these changes do end up being incorporated upstream.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7288f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7288f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7288f2.large.jpg

The kernel in Enterprise Linux v. 3 primarily is based on the 2.4.21 kernel, but it
has a huge number of features backported from the more recent 2.6 kernel. In
recognition that the 2.6 kernel had not yet been stabilized, only key features
deemed commercially ready were candidates for the backport into Enterprise
Linux v. 3. Here's a little tip on how to really annoy a Red Hat kernel developer:
say something like, “So, you guys just ship the stock 2.4.21 kernel; right?”

The most daunting challenges in constructing the Enterprise Linux v. 3 kernel
were the requirements that support be provided for seven different
architectures and that the kernels for these architectures all must be built from
a common source tree. The seven architectures include: x86 (and Athlon),
AMD64, Itanium 2, IBM mainframe (both s390 and s390x) and IBM's iSeries and
pSeries PPC systems. Although each of these architectures is supported by the
upstream kernels in varying degrees, the reality is many of these architectures
are developed primarily in isolation. This inevitably leads to integration
nightmares.

Another interesting twist to the story is Red Hat's kernel development team
literally is spread all over the world. Out of necessity, this has led to virtually all
interaction being done on-line. For example, we rarely have team meetings, as
time-zone challenges get in the way. Sometimes this on-line communication
goes to extremes; it's quite common to use IRC chat sessions to speak with
someone sitting at the next desk. Yes, our mothers were right; we are a bunch
of geeks.

 Late-Breaking Features

Just as the sun never sets on kernel development, our near-and-dear partners
and customers don't sit still either. One of the few constants in this dynamic
environment is that throughout the course of the release development, there is
a steady influx of must-have crisis feature additions. We endeavor to make it a
trade-off and kick out a lower priority feature in order to keep the workload
sane. In the end, however, it never seems to work out to such a sweet balance.
The ability of the team to persevere through all these demands is remarkable.

As productive as the Red Hat developers are, some late-breaking features
always have to be deferred to a later release or update. These situations cause
no end of trauma for our partner managers who have to be the bearers of bad
news. It's improbable that our partners ever heard the saying “don't shoot the
messenger”. There was one incident when we were two hours from shipping
the release and a delivery arrived on the loading dock. It was a new computer
platform we needed in order to be able to develop and test support for it. The
partner was incredulous that we were unable to accommodate.

 Testing

Several different levels of testing are performed throughout the development
process. It all begins with the developers performing unit testing. This consists
of manual, hands-on testing as well as development of automated testing
programs. The set of automated tests constantly is being augmented as new
problems are addressed. These automated test programs then are
incorporated into a test grid that is managed by the QA department. In addition
to the internally written unit tests, our test grid includes a wide range of
regression tests. Examples include POSIX, LSB conformance, LTP, crashme, gcc
suite and diabolical tests provided by our partners. Stress tests also are
performed for a range of system functions using such tests as cerberus,
lmbench, bonnie, spec and other micro-benchmarks, to name a few. These
automated tests are run nightly in order to detect regressions quickly. This is
critical in order to isolate the offending code. In contrast, if we waited to
perform monthly base-level testing, it would be much more difficult to identify
the culprit.

On top of the nightly tests, more time-consuming test scenarios are run less
frequently. Examples include installation testing using a wide range of
configuration options across the many different languages we support. Hands-
on testing rounds out the internal QA coverage. Doing justice to the staggering
range of testing done by the hardworking QA team here substantially exceeds
the scope of a single article.

After the kernels have passed internal units tests and QA scrutiny, we make
them available to our development partners. This vastly broadens the coverage
to include external QA and development teams in other companies. Our
partners focus testing on their hardware platforms as well as the typical server
capabilities their enterprise customers demand.

The last layer of testing includes external beta testers. These beta testers
include high-profile customers, as well as the many people in the Linux
community who respond to our open invitation to help with testing.

The combination of all these different testing activities yields an extremely
stable and well-tested product. It also points out the huge value of the open-
source model. It is the combination of testing resources from many different
companies and dedicated individuals that scales well beyond the resources a
single company could bring to bear to tackle an infinite testing matrix.

Figure 3, composed by Nick Carr, summarizes the development model from
requirements gathering, development and testing, culminating in production.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7288f3.large.jpg

Figure 3. The Development Process, from Requirements Gathering to Release

 Conclusion

In the end, the Red Hat Enterprise Linux v. 3 distribution did ship on schedule in
mid-October 2003. Having worked for many years for a major IHV on a large-
scale operating system engineering team, I have been exposed to both the
proprietary operating system development model and the open-source
development model. The successful outcome of the Enterprise Linux v. 3
release clearly demonstrates the power of cooperative open-source
development. The quantity of features, rapid development time and caliber of
participants, both internal and external, is remarkable and stands as a strong
testament to the Linux community.

When the release shipped, we all were proud to have contributed to such a
tremendous accomplishment. But the time window to rejoice was short indeed.
As soon as Enterprise Linux v. 3 finished, it seemed we already were late with
the development of Enterprise Linux v. 4. This reminds me of the quote,
“Congratulations for winning this battle, that earns you the privilege to come
back and fight another day.” Gotta go, more battles to fight.

Tim Burke is the director of Server Development at Red Hat. This team is
responsible for the kernel and the set of core applications included in Red Hat
Enterprise Linux. Prior to becoming a manager, Tim earned an honest living
developing Linux highly available cluster solutions and UNIX kernel technology.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7288f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7288f3.large.jpg

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Samba Logging for Audit Trails

Edward Kablaoui

Issue #120, April 2004

Audit trails are a network security requirement for both Northrop Grumman
and its customers. A small modification to Samba enabled the company's
sysadmins to create the needed audit trails.

We at Northrop Grumman recently decided to replace the Microsoft Windows
2000 server on one of our networks with a Linux server running Samba. The
primary motivations for replacing the Windows server with Linux were:

• Common user names and passwords for both Windows and Linux users.
• Export commonly shared directories and files using NFS and Samba.
• Allow software developers the freedom to choose their development

environment.
• No additional licensing fees required for Windows 2000 server and clients.
• Centralized and cleaner audit trails.
• A more secure computing environment.
• Software upgrades can be scheduled when necessary as opposed to being

dictated by outside software vendors.

In addition to configuring Samba as a primary domain controller, modifications
were made to the Samba source code to meet the security requirements of our
network. This article briefly describes how to install and configure Samba and
then explains in detail how to modify Samba source code to produce log entries
required for audit trails.

 Audit Trail Requirements

Our networks must be configured to meet corporate and customer
requirements regarding security. Among the various security requirements that
must be met, administrators need to have the ability to audit activity on the
network. The required information gathered and logged for these audits is

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

referred to as an audit trail and include the following information: successful
logins, logouts, failed logins and password changes.

Most operating systems generate log files with this information, but it may be
scattered in a number of different files and contain more information than is
necessary. We also wanted to centralize this information so network
administrators do not have to examine the logs on every computer on the
network. Configured properly, a Windows 2000 server logs the above
information for all machines connected to the network, in addition to reporting
a myriad of extraneous information. This additional information makes security
audits longer, more error-prone and also occupies a lot of disk space when
archived.

In order to use Linux and Samba as the primary domain server for Windows
2000 clients, Samba has to duplicate the logging capabilities of the Windows
2000 server. Once Samba was configured for the network, it seemed the only
way to meet the logging requirements was to modify the Samba source code.
An additional benefit of modifying the source code was the ability to have only
the necessary information recorded in the log files. The replacement of the
Windows 2000 server with Samba would not have been possible had Samba
been a closed-source, proprietary product.

 Downloading and Configuring Samba

The Linux server initially arrived with Red Hat 8.0 and Samba already installed.
The first step was to download the tarred and compressed version of Samba
2.2.8a from the Web site, www.samba.org. Once downloaded, Samba was
installed by running the following commands as root:

tar cvfz samba-2.2.8a.tar.gz
cd samba-2.2.8a/source
./configure
make
make install

The Samba executables, smbd and nmbd, were installed under the /usr/local/
samba/bin directory. The Red Hat installation had placed these executables
under the /sbin directory. Using the newly created Samba executables requires
changing the Samba startup script /etc/init.d/samba. The current Samba
dæmons should be stopped first by running the command /etc/init.d/
samba stop.

The /etc/init.d/samba file then is edited such that the commands for starting
smbd and nmbd are changed from /sbin/smbd -D to /usr/local/
samba/bin/smbd -D and /sbin/nmbd -D to /usr/local/samba/

http://www.samba.org

bin/nmbd -D. The new dæmons are then started with the command /etc/
init.d/samba start.

Once the new dæmons are installed successfully, Samba needs to be
configured by setting parameters in the smb.conf file. For the 2.2.8a
distribution, the default location of this file is /etc/samba. The smb.conf file
consists of sections denoted by square brackets, and each section names a
share or service. The following example shows some of the parameter values
set under the global section to create a Primary Domain Controller for Windows
clients:

[global]
netbios name = SambaServer
workgroup = NETDOMAIN
domain master = yes
local master = yes
preferred master =yes
os level = 65

For authenticating users on the network, the following parameters also need to
be set under the global section:

encrypt passwords = yes
security = user
domain logons = yes

Finally, for Windows 2000 clients, the domain admin group and add user script
global parameters need to be set as well:

domain admin group = root
add user script = /usr/sbin/useradd -d /dev/null \
 -g 100 -s /bin/false -M %u

Public and private shares for Window clients are created by adding new
sections.

Public:

[share]
path = /home/share
read only = no
browseable = yes
guest ok = no
create mode = 0770
comment = Shared Folder
hide dot files = yes

Private:

[homes]
path = /home/%u
read only = no
browseable = no
guest ok = no
map archive = yes

create mode = 0750
comment = Home Directories
hide dot files = yes

To verify that the parameters are correct in the smb.conf file or to debug
configuration problems, use the testparm command. For debugging problems
with Samba in general, the log files log.smbd and log.nmbd under the /var/log/
samba directory are invaluable. The parameter log level in the global section of
the smb.conf file determines the amount of detailed information Samba writes
to the log files, with level 0 being the most general and 10 being the most
detailed. Each logging level contains the messages from that level, in addition
to the logging messages below it. For example, a logging level of 5 contains
messages from level 5, plus those from levels 0 through 4.

Listing 1 is an example from the log.smbd file. The first line in a typical entry in
the log file contains the date and time the event occurred, the source file name,
the function name and the line number where the message was generated. The
second line contains the action that occurred, the domain and client name and
a short message describing the logging event. Later in this article, we examine
how these messages are generated in the Samba source code.

Listing 1. Log Entries from /var/log/samba/log.smbd

[2003/11/25 17:13:12, 0] smbd/server.c:main(791)
 smbd version 2.2.8a started.
 Copyright Andrew Tridgell and the \
 Samba Team 1992-2002
[2003/11/25 17:17:32, 0] \
 rpc_server/srv_netlog_nt.c:_net_sam_logon(643)
 Logon . Domain:[NETDOMAIN].\
 HostName:[192.168.0.15]. \
 User:[john]. FAILED No Such User
[2003/11/25 17:17:55, 0] \
 rpc_server/srv_netlog_nt.c:_net_sam_logon(665)
 Logon . Domain:[NETDOMAIN]. \
 HostName:[192.168.0.15]. \
 User:[bill]. FAILED Incorrect Password
[2003/11/25 17:18:33, 0] \
 rpc_server/srv_netlog_nt.c:_net_sam_logon(691)
 Logon . Domain:[NETDOMAIN]. \
 HostName:[192.168.0.15] \
 User:[bill] Successfully Logged On
[2003/11/25 17:19:34, 0] \
 smbd/chgpasswd.c:check_oem_password(836)
 check_oem_password: incorrect password length \
 (262218674) for user bill.
[2003/11/25 17:19:46, 0] \
 smbd/chgpasswd.c:chgpasswd(474)
 Password Change: user bill, \
 New password is shorter than minimum password \
 length = 8
[2003/11/25 17:21:29, 0] \
 smbd/chgpasswd.c:chat_with_program(450)
 Password Change . User:[bill] \
 Password Successfully Changed
[2003/11/25 17:16:58, 0] \
 smbd/service.c:close_cnum(680)
 clientPC (192.168.0.15) \
 closed connection to service bill

Users can be added to the domain by running the command smbpasswd -a
username as root and setting the user password. The passwords are stored in
the /etc/samba/private/smbpasswd file. Users also can be disabled with the
command smbpasswd -d and enabled by running smbpasswd -e.

For more details on configuring Samba for Windows 2000 clients and
understanding SMB protocols, O'Reilly's Using Samba, Second Edition, by Jay Ts,
Robert Eckstein and David Collier-Brown, is an excellent reference.

 Modifying Samba Source Code for Audit Trails

Once the network was configured and working properly, the next step was to
record the required information for the audit trails in the log.smbd file. Initially,
this was attempted by setting various logging levels in the smb.conf file,
restarting the Samba dæmons by executing /etc/init.d/samba restart
and then analyzing the output from the log files while performing various tasks
on a Windows 2000 client. Unfortunately, regardless of the log level, none of
the required information was being logged. At this point, it became obvious
that modifications to the source code were necessary to generate the log
entries.

The Samba source code is in the samba-2.2.8a/source directory and is the root
directory for the filename in the log messages. The first entry in Listing 1 shows
the file as smbd/server.c:main(791). By examining line 791 in the
samba-2.2.8a/source/smbd/server.c file, you can see the DEBUG macro is used
to generate the log message. The syntax for the DEBUG macro is:

DEBUG(log_level, "string", arguments);

The format for the second and third arguments is similar to the printf function.
Examples of custom DEBUG statements are shown in Listings 2 through 4.

Listing 2. DEBUG Calls Added to source/rpc_server/srv_netlog_nt.c

632 /* get the account information */
633 pdb_init_sam(&sampass);
634 become_root();
635 ret = pdb_getsampwnam(sampass, nt_username);
636 unbecome_root();
637
638
639 if (!ret)
640 {
641 pdb_free_sam(sampass);
642 // ESK
631 /* checks for failed users */
643 DEBUG(0,("Logon . Domain:[%s]. HostName: \
 [%s]. User:[%s]. FAILED No Such User \n",
 lp_workgroup(),
 client_addr(),
 nt_username));

644 return NT_STATUS_NO_SUCH_USER;
645 }
646
647 acct_ctrl = pdb_get_acct_ctrl(sampass);
630 map_username(nt_username);
.
.
.
663 /* Check for failed password */
664 if (!NT_STATUS_IS_OK(status)) {
665 DEBUG(0,("Logon . Domain:[%s]. HostName: \
 [%s]. User:[%s]. FAILED Incorrect Password \n",
 lp_workgroup(),
 client_addr(),
 nt_username));
666 pdb_free_sam(sampass);
667 return status;
668 }
.
.
.
669 /* Check PAM Password */
670 #ifdef WITH_PAM
671 become_root();
672 status =
 smb_pam_accountcheck(pdb_get_username(sampass));
673 unbecome_root();
674 if (!NT_STATUS_IS_OK(status)) {
675 pdb_free_sam(sampass);
676 DEBUG(0,("Logon . Domain:[%s]. HostName: \
 [%s]. User:[%s]. FAILED Incorrect Password \n",
 lp_workgroup(),
 client_addr(),
 nt_username));
677 return status;
678 }
679 #endif
.
.
.
690 /* Makes it to this point you have
 successfully logged on */
691 DEBUG(0,("Logon . Domain:[%s]. HostName: \
 [%s] User:[%s] Successfully Logged On\n",
 lp_workgroup(),
 client_addr(),
 nt_username));

Listing 3. DEBUG Call Added to source/smbd/service.c

675 // ESK
676 if(strcmp(lp_servicename(SNUM(conn)), \
 "share") &&
677 strcmp(lp_servicename(SNUM(conn)), \
 "profiles") &&
678 strcmp(lp_servicename(SNUM(conn)),\
 "netlogon") &&
679 strcmp(lp_servicename(SNUM(conn)), "IPC$")){
680 DEBUG(0, ("%s (%s) closed connection to \
 service %s\n",
681 remote_machine,conn->client_address,
682 lp_servicename(SNUM(conn))));
683 }

Listing 4. DEBUG Call Added to source/smbd/chgpasswd.c

447
448 /* Logs Password Change */
449 if (chstat)

450 DEBUG(0, ("Password Change . User:[%s] \
 %sPassword Successfully Changed\n",
451 name, (chstat ? "" : "un")));
452 return (chstat);
453 }

Creating custom log messages requires inserting DEBUG macros into the
appropriate section of code and filling in the correct parameters and messages.
Once the DEBUG statements are inserted, the Samba executables need to be
rebuilt by executing make install in the samba-2.2.a/source directory; the
dæmons are restarted with the command /etc/init.d/samba restart.
Any new log messages added to the Samba source files now should appear in
the log files.

Determining where DEBUG statements should be placed in the code may
require setting various log levels in the smb.conf file. The output of the log files
can help narrow down which source files should be examined for particular
information. Using printf statements also may help in determining which
variables should be logged and in formulating the final log message. If you do
plan on using printf statements, smbd and nmbd should be executed without
the -D option by stopping the dæmons with the command /etc/init.d/
samba stop and executing /usr/local/samba/bin/smbd and /usr/
local/samba/bin/nmbd on the command line. The printf statements then
are directed toward standard output and appear on the console.

Listings 2 through 4 show custom DEBUG statements added to the Samba
source code. Listing 2 shows DEBUG statements added to the source/
rpc_server/srv_netlog_nt.c file for reporting failed and successful network
logons. The first DEBUG statement reports when an unknown user attempts to
log on to the network, and the second DEBUG statement records incorrect
passwords. An additional DEBUG statement was added for installations of
Samba using PAM. The final DEBUG statement records a successful logon to the
network. By examining the log output from Listing 1, you should see a direct
correspondence between each of the DEBUG statements and the generated log
entries.

Listing 3 shows a DEBUG statement added to the source/smbd/service.c file to
capture when a user has logged off the system by checking when a share to the
user has been closed. Unfortunately, this is an unreliable check because the
user always is dropping shares during the course of a session. There also is a
short delay between the time the user logs off the network and when the
dropped share is recorded. Determining when a user has logged off the
network requires checking any logons to the machine after the last user share
was dropped or checking whether the machine still is locked by the user.

Once Samba is logging the required information, you may want to clean up the
log file by removing unnecessary entries. This can be accomplished by setting
the log level to 0 in required DEBUG statements and setting the log level to 1 or
higher for other DEBUG statements. The log level parameter in the smb.conf
file then should be set to 0. The logging features of Samba make it easy to track
down unwanted log entries by providing the exact location of the DEBUG
statement. Cleaning up log.smbd makes the audits easier and less error-prone
than a cluttered log file, such as the log file generated by a Windows 2000
server.

 Updating User Passwords

When updating passwords, system requirements state that passwords must be
at least eight characters long and the password change must be logged. In
addition, we also wanted the passwords to be synchronized between Windows
and Linux so users have common logins for both systems.

For the first requirement, the define statement in source/include/local.h, on
line 175, was changed to #define MINPASSWDLENGTH 8. To ensure this
change is captured in all the necessary source files, make clean should be
executed in the source directory before executing make install.

The source code for verifying and updating password changes is located in the
file source/smbd/chgpasswd.c. Listing 4 shows the DEBUG statement that was
added to the end of the chat_with_program function to log when users
successfully change their passwords. In addition to adding the capability to
record successful password changes, the failed password updates also are
logged. Failed password changes are recorded because regardless of why the
password update failed, the following message always is returned to the user:

The User name or old password is incorrect.
Letters in passwords must be typed using the
correct case. Make sure the Caps Lock is not
accidentally on.

These log messages can help frustrated users determine why they are unable
to update their passwords. However, access to these log messages requires
assistance from the system administrator. Log entries 5 and 6 in Listing 1
present two examples of user bill being unable to change his password
successfully.

To synchronize passwords between Samba and the Linux system passwords,
set the following fields in the smb.conf file under the global section:

[global]
unix password sync = yes
pam password change = yes
passwd program = /usr/bin/passwd

passwd chat =*New*password* %n\n *new*password*
↪%n\n *successfully*

For most systems, the passwd chat field does not need to be set, because
the default setting works fine. If the passwd chat field does need to be set, the
syntax should follow the passwd command's input and output closely. The
syntax for password chat is * for any character and %n for the new password;
spaces designate new lines, and \n is used when user input is required. For
further help with debugging, set the log level to 101 and the field passwd
chat debug to yes in the global section of the smb.conf file. As a last resort,
printf and DEBUG statements can be used in the function chat_with_program in
the chpasswd.c file to help debug the problem.

 Future Work

Some of the current problems mentioned above, such as displaying a more
meaningful error message when users fail to update their passwords and a
more exact method of determining when users have logged off the network,
need to be addressed. Additional features, such as user lockout after five
consecutive unsuccessful login attempts and preventing the user from reusing
the five previous passwords, also should be added. Using LDAP for both Linux
and Windows clients is worth investigating as well.

 Conclusion

Samba provides a reasonable alternative to using Windows 2000 servers on a
network to manage Windows clients. The primary advantage of Samba over
Windows is the ability to modify the Samba source code to create a system
tailored for a specific computing need. It also offers network administrators the
ability to troubleshoot the network at the source code level. None of this is
possible when using proprietary software, a huge drawback in configuring and
debugging services on a network. All of these factors add up to large cost
savings in both licensing fees and network administration time.

Edward Kablaoui (eskablaoui@yahoo.com) currently is a software engineer at
Northrop Grumman. He lives in Maryland with his wife, Nancy.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:eskablaoui@yahoo.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Writing a Simple USB Driver

Greg Kroah-Hartman

Issue #120, April 2004

Give your Linux box a multicolored light you can see from across the room, and
learn how to write a simple driver for the next piece of hardware you want to
hook up.

Since this column began, it has discussed how a Linux driver writer can create
various types of kernel drivers, by explaining the different kernel driver
interfaces including TTY, serial, I2C and the driver core. It is time to move on
now and focus on writing real drivers for real hardware. We start by explaining
how to determine what kind of kernel driver interface to use, tricks to help
figure out how the hardware actually works and a lot of other real-world
knowledge.

Let's begin with a goal of making a simple USB lamp device work well with
Linux. Editor Don Marti pointed out a neat device, the USB Visual Signal
Indicator, manufactured by Delcom Engineering and shown in Figure 1. I have
no relationship with this company; I just think they make nice products. This
device can be ordered on-line from the Delcom Web site, www.delcom-
eng.com. Don challenged me to get the device working on Linux, and this article
explains how I did it.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.delcom-eng.com
http://www.delcom-eng.com
https://secure2.linuxjournal.com/ljarchive/LJ/120/7353f1.large.jpg

Figure 1. Delcom's USB Visual Signal Indicator is a simple first USB programming project.

 The Hardware Protocol

The first goal in trying to write a driver for a device is to determine how to
control the device. Delcom Engineering is nice enough to ship the entire USB
protocol specification their devices use with the product, and it also is available
on-line for free. This documentation shows what commands the USB controller
chip accepts and how to use them. They also provide a Microsoft Windows DLL
to help users of other operating systems write code to control the device.

The documentation for this device is only the documentation for the USB
controller in the lamp. It does not explicitly say how to turn on the different
color LEDs. For this, we have to do a bit of research.

No Docs? Reverse Engineer It!

If the USB protocol for this device had not been documented or available to me,
I would have had to reverse engineer this information from the device itself. A
handy tool for this kind of work is a free program called USB Snoopy,
www.wingmanteam.com/usbsnoopy; another version of it is SnoopyPro,
usbsnoop.sourceforge.net. These programs are both Windows programs that
allow users to capture the USB data that is sent to and received from any USB
device on a Windows system. All a developer needs to do is find a Windows
machine, install the Windows driver provided by the manufacturer for the
device and run the snoop program. The data is captured to a file to be analyzed

https://secure2.linuxjournal.com/ljarchive/LJ/120/7353f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7353f1.large.jpg
http://www.wingmanteam.com/usbsnoopy
http://usbsnoop.sourceforge.net

later. Perl scripts can help filter some of the extra noise in the output of these
snoop programs into an easier format to understand.

Another method a few people have used to reverse engineer the USB protocol
of a device is to run a Windows instance using VMware on top of Linux. VMware
enables the Windows instance to talk to all of the USB devices plugged in to the
Linux machine by sending data to Linux though the usbfs. A simple
modification to the usbfs causes all data flowing though it to be logged to the
kernel log. Using this, the full USB traffic stream can be captured and later
analyzed.

After opening up the lamp device, making sure not to lose the spring that easily
pops out when unscrewing the device, the circuit board can be inspected
(Figure 2). Using an ohmmeter, or any kind of device for detecting a closed
circuit, it was determined that the three different LEDs are connected to the
first three pins of port 1 on the main controller chip.

In reading the documentation, the USB command to control the levels of the
port 1 pins is Major 10, Minor 2, Length 0. The command writes the
least significant byte of the USB command packet to port 1, and port 1 is
defaulted high after reset. So, that is the USB command we need to send to the
device to change the different LEDs.

Figure 2. The three LEDs are connected to the first three pins of the controller chip.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7353f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7353f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7353f2.large.jpg

 Which LED Is Which?

Now that we know the command to enable a port pin, we need to determine
which LED color is connected to which pin. This is easy to do with a simple
program that runs through all possible combinations of different values for the
three port pins and then sends the value to the device. This program enabled
me to create a table of values and LED colors (Table 1).

Table 1. Port Values and the Resulting LED Patterns

So, if all pins on the port are enabled (a value of 0x07 hex), no LEDs are on. This
matches up with the note in the data sheet that stated, “Port 1 is defaulted high
after reset.” It would make sense not to have any LEDs enabled when the
device is first plugged in. This means we need to turn port pins low (off) in
order to turn on the LED for that pin. Using the table, we can determine that
the blue LED is controlled by pin 2, the red LED by pin 1 and the green LED by
pin 0.

 A Kernel Driver

Armed with our new-found information, we set off to whip up a quick kernel
driver. It should be a USB driver, but what kind of interface to user space
should we use? A block device does not make sense, as this device does not
need to store filesystem data, but a character device would work. If we use a
character device driver, however, a major and minor number needs to be
reserved for it. And how many minor numbers would we need for this driver?
What if someone wanted to plug 100 different USB lamp devices in to this
system? To anticipate this, we would need to reserve at least 100 minor
numbers, which would be a total waste if all anyone ever used was one device

Port value in hex Port value in binary LEDs on

0x00 000 Red, Green, Blue

0x01 001 Red, Blue

0x02 010 Green, Blue

0x03 011 Blue

0x04 100 Red, Green

0x05 101 Red

0x06 110 Green

0x07 111 No LEDs on

at a time. If we make a character driver, we also would need to invent some
way to tell the driver to turn on and off the different colors individually.
Traditionally, that could be done using different ioctl commands on the
character driver, but we know much better than ever to create a new ioctl
command in the kernel.

As all USB devices show up in their own directory in the sysfs tree, so why not
use sysfs and create three files in the USB device directory, blue, red and
green? This would allow any user-space program, be it a C program or a shell
script, to change the colors on our LED device. This also would keep us from
having to write a character driver and beg for a chunk of minor numbers for
our device.

To start out our USB driver, we need to provide the USB subsystem with five
things:

• A pointer to the module owner of this driver: this allows the USB core to
control the module reference count of the driver properly.

• The name of the USB driver.
• A list of the USB IDs this driver should provide: this table is used by the

USB core to determine which driver should be matched up to which
device; the hot-plug user-space scripts use it to load that driver
automatically when a device is plugged in to the system.

• A probe() function called by the USB core when a device is found that
matches the USB ID table.

• A disconnect() function called when the device is removed from the
system.

The driver retrieves this information with the following bit of code:

static struct usb_driver led_driver = {
.owner = THIS_MODULE,
.name = "usbled",
.probe = led_probe,
.disconnect = led_disconnect,
.id_table = id_table,

};

The id_table variable is defined as:

static struct usb_device_id id_table [] = {
{ USB_DEVICE(VENDOR_ID, PRODUCT_ID) },
{ },

};
MODULE_DEVICE_TABLE (usb, id_table);

The led_probe() and led_disconnect() functions are described later.

When the driver module is loaded, this led_driver structure must be registered
with the USB core. This is accomplished with a single call to the usb_register()
function:

retval = usb_register(&led_driver);
if (retval)
 err("usb_register failed. "
 "Error number %d", retval);

Likewise, when the driver is unloaded from the system, it must unregister itself
from the USB core:

usb_deregister(&led_driver);

The led_probe() function is called when the USB core has found our USB lamp
device. All it needs to do is initialize the device and create the three sysfs files,
in the proper location. This is done with the following code:

/* Initialize our local device structure */
dev = kmalloc(sizeof(struct usb_led), GFP_KERNEL);
memset (dev, 0x00, sizeof (*dev));

dev->udev = usb_get_dev(udev);
usb_set_intfdata (interface, dev);

/* Create our three sysfs files in the USB
* device directory */
device_create_file(&interface->dev, &dev_attr_blue);
device_create_file(&interface->dev, &dev_attr_red);
device_create_file(&interface->dev, &dev_attr_green);

dev_info(&interface->dev,
 "USB LED device now attached\n");
return 0;

The led_disconnect() function is equally as simple, as we need only to free our
allocated memory and remove the sysfs files:

dev = usb_get_intfdata (interface);
usb_set_intfdata (interface, NULL);

device_remove_file(&interface->dev, &dev_attr_blue);
device_remove_file(&interface->dev, &dev_attr_red);
device_remove_file(&interface->dev, &dev_attr_green);

usb_put_dev(dev->udev);
kfree(dev);

dev_info(&interface->dev,
 "USB LED now disconnected\n");

When the sysfs files are read from, we want to show the current value of that
LED; when it is written to, we want to set that specific LED. To do this, the

following macro creates two functions for each color LED and declares a sysfs
device attribute file:

#define show_set(value) \
static ssize_t \
show_##value(struct device *dev, char *buf) \
{ \
 struct usb_interface *intf = \
 to_usb_interface(dev); \
 struct usb_led *led = usb_get_intfdata(intf); \
 \
 return sprintf(buf, "%d\n", led->value); \
} \
 \
static ssize_t \
set_##value(struct device *dev, const char *buf, \
 size_t count) \
{ \
 struct usb_interface *intf = \
 to_usb_interface(dev); \
 struct usb_led *led = usb_get_intfdata(intf); \
 int temp = simple_strtoul(buf, NULL, 10); \
 \
 led->value = temp; \
 change_color(led); \
 return count; \
} \

static DEVICE_ATTR(value, S_IWUGO | S_IRUGO,
 show_##value, set_##value);
show_set(blue);
show_set(red);
show_set(green);

This creates six functions, show_blue(), set_blue(), show_red(), set_red(),
show_green() and set_green(); and three attribute structures, dev_attr_blue,
dev_attr_red and dev_attr_green. Due to the simple nature of the sysfs file
callbacks and the fact that we need to do the same thing for every different
value (blue, red and green), a macro was used to reduce typing. This is a
common occurrence for sysfs file functions; an example of this in the kernel
source tree is the I2C chip drivers in drivers/i2c/chips.

So, to enable the red LED, a user writes a 1 to the red file in sysfs, which calls
the set_red() function in the driver, which calls the change_color() function. The
change_color() function looks like:

#define BLUE 0x04
#define RED 0x02
#define GREEN 0x01
 buffer = kmalloc(8, GFP_KERNEL);

 color = 0x07;
 if (led->blue)
 color &= ~(BLUE);
 if (led->red)
 color &= ~(RED);
 if (led->green)
 color &= ~(GREEN);
 retval =
 usb_control_msg(led->udev,
 usb_sndctrlpipe(led->udev, 0),
 0x12,

 0xc8,
 (0x02 * 0x100) + 0x0a,
 (0x00 * 0x100) + color,
 buffer,
 8,
 2 * HZ);
 kfree(buffer);

This function starts out by setting all bits in the variable color to 1. Then, if any
LEDs are to be enabled, it turns off only that specific bit. We then send a USB
control message to the device to write that color value to the device.

It first seems odd that the tiny buffer variable, which is only 8-bytes long, is
created with a call to kmalloc. Why not simply declare it on the stack and skip
the overhead of dynamically allocating and then destroying it? This is done
because some architectures that run Linux cannot send USB data created on
the kernel stack, so all data that is to be sent to a USB device must be created
dynamically.

 LEDs in Action

With this kernel driver created, built and loaded, when the USB lamp device is
plugged in, the driver is bound to it. All USB devices bound to this driver can be
found in the sysfs directory for the driver:

$ tree /sys/bus/usb/drivers/usbled/
/sys/bus/usb/drivers/usbled/
`-- 4-1.4:1.0 ->
../../../../devices/pci0000:00/0000:00:0d.0/usb4/4-1/4-1.4/4-1.4:1.0

The file in that directory is a symlink back to the real location in the sysfs tree
for that USB device. If we look into that directory we can see the files the driver
has created for the LEDs:

$ tree /sys/bus/usb/drivers/usbled/4-1.4:1.0/
/sys/bus/usb/drivers/usbled/4-1.4:1.0/
|-- bAlternateSetting
|-- bInterfaceClass
|-- bInterfaceNumber
|-- bInterfaceProtocol
|-- bInterfaceSubClass
|-- bNumEndpoints
|-- blue
|-- detach_state
|-- green
|-- iInterface
|-- power
| `-- state
`-- red

Then, by writing either 0 or 1 to the blue, green and red files in that directory,
the LEDs change color:

$ cd /sys/bus/usb/drivers/usbled/4-1.4:1.0/
$ cat green red blue
0
0
0
$ echo 1 > red
[greg@duel 4-1.4:1.0]$ echo 1 > blue
[greg@duel 4-1.4:1.0]$ cat green red blue
0
1
1

This produces the color shown in Figure 3.

Figure 3. The Device with the Red and Blue LEDs On

 Is There a Better Way?

Now that we have created a simple kernel driver for this device, which can be
seen in the 2.6 kernel tree at drivers/usb/misc/usbled.c or on the Linux Journal
FTP site at (ftp.linuxjournal.com/pub/lj/listings/issue120/7353.tgz), is this really
the best way to talk to the device? What about using something like usbfs or
libusb to control the device from user space without any special device drivers?
In my next column, I will show how to do this and provide some shell scripts to
control the USB lamp devices plugged in to the system easily.

If you would like to see kernel drivers written for any other types of devices,
within reason—I'm not going to try to write an NVIDIA video card driver from
scratch—please let me know.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7353f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7353f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7353f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/listings/120/7353.tgz

Thanks to Don Marti for bugging me to get this device working on Linux.
Without his prodding it would have never gotten finished.

Greg Kroah-Hartman currently is the Linux kernel maintainer for a variety of
different driver subsystems. He works for IBM, doing Linux kernel-related
things, and can be reached at greg@kroah.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:greg@kroah.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 At the Forge

COREBlog

Reuven M. Lerner

Issue #120, April 2004

It's not a Web development framework without a blog package. Here's a Zope-
based system for a Web journal with all the bells and whistles.

Over the past year or so, this column has looked at a number of open-source
products that can serve as a content management system (CMS) for a Web site.
If you publish a newspaper, magazine or Web site with content that changes on
a regular basis, such a CMS undoubtedly could be a boon to your site. After all,
why should you modify the links, headlines and other items by hand, if
software can take care of those tasks for you?

A traditional CMS is a big, complex piece of software, because it needs to take
into account the many different types of organizations of Web sites. Should
anyone on your staff be able to create new articles or only reporters? Which
editors should be allowed to post items to the Web? What sorts of headers and
footers do you need? What sort of search mechanism do you need? The
answers are almost endless, which explains why CMS software can be complex
to install and administer.

If you want to publish articles on a regular basis but don't want the
administrative overhead associated with a full-fledged CMS, you might want to
consider a Weblog. Weblogs, also known by the shortened name blogs, began
in the mid-1990s as personal journals, on-line diaries that allow an individual to
write and post articles quickly and easily. And although blogs vary considerably
in style, their format tends to be fairly uniform, which reduces the complexity of
the software, making it easier to configure and administer.

This month, we take an initial look at open-source Weblog software, as well as
the standards that have become increasingly prevalent in the blogging

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

community. Along the way, we look at COREBlog, a Zope-based tool that makes
it fairly easy to create and administer a Weblog.

To be honest, I have some personal interest in finding a good blogging package.
Having read a number of Weblogs over the last few years, I've decided it's time
to try blogging for myself. The results of my search should be available by the
time you read this at blog.lerner.co.il (Figure 1).

Figure 1. The author's blog uses the Zope-based COREBlog package.

 What Is a Weblog?

Weblogs come in all shapes and sizes, reflecting their authors' interests and
styles. That said, a number of characteristics are common to most Weblogs:

• Order: postings are displayed in reverse-chronological order, with the
most recent article displayed at the top of the page. The Weblog's home
page typically shows only the last few days of postings, with the rest
available through an archive feature.

• Comments: readers of the Weblog are invited to submit comments, often
posted immediately following the article in question. In this way, Weblogs
are similar to Web-based forums, except only the blogger is allowed to
begin a discussion topic.

• One author: typically, only one person participates in a Weblog. Some
Weblogs are written by multiple authors, but this is relatively rare. A
Weblog's comments, as described above, are written by people other than
the main author.

http://blog.lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/120/7346f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7346f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7346f1.large.jpg

• Syndication: the contents of a Weblog generally are made available using
an XML format known as RSS, which stands for really simple syndication.
This makes it possible to retrieve, analyze and collect a number of
different Weblogs, creating something akin to a personal newspaper.

• Trackback: introduced by the proprietary package Movable Type,
trackbacks make it possible for Weblogs to keep track of links pointing to
one another.

• Web-based editing: because Weblogs exist only on the Web, their
interfaces expect that you want to write and edit postings using your Web
browser. Administering a Weblog in this way makes a great deal of sense,
but writing and editing in a Web browser can be an unpleasant
experience. Many Weblog packages offer desktop applications that ease
this pain, allowing users to write using a word processor or simple text
editor and upload the final product when they are done. Open-source
systems are available that can make such off-line editing possible, but
they involve some configuration. Therefore, you probably are going to
need to get used to writing inside of a text-area widget or learn how to
customize Mozilla so you can use a friendlier editor. You also can look into
the open-source Epoz Project, epoz.sf.net, which provides a cross-
browser, JavaScript-based editing system.

The above list is not comprehensive. Plenty of Weblogs lack comments,
syndication or trackback. But just as English-language newspapers evolved to
have a common set of style rules for headlines, captions and story ranking, so
too have Weblogs evolved to have a common set of expectations. And the
competition for features is rather fierce: when one Weblog package adds a
useful new feature, others usually implement it within a short period of time.

The above features would be easy and straightforward for an experienced
Web/database programmer to implement in a high-level language, such as Perl
or Python. If you use a relational database, say PostgreSQL, to store the articles,
you no longer have to worry about ordering or file storage, so you can
concentrate on output. And indeed, some prominent bloggers, such as Tim
Bray, author of the excellent Ongoing Weblog at www.tbray.org/ongoing, have
created their own Weblog software.

As much as I enjoy writing new programs, I dislike reinventing the wheel. And
given the plethora of good, existing solutions for creating a Weblog, including
several that allow me to write plugins that extend their functionality, I decided
to use something that already exists, extending and modifying it as necessary
using an established API.

Moreover, some of the nicer Weblog features, such as comments and
trackback, can be tricky to implement. They aren't necessarily hard to work

http://epoz.sf.net
http://www.tbray.org/ongoing

with, per se, but given that it seems 100,000 different mechanisms for
commenting on Weblog postings already are out there, I would like to avoid
creating number 100,001.

I should note that if you are interested in creating your own Weblog, there is an
alternative that allows you to avoid writing or configuring any software at all—
namely, using one of the many free Weblog hosting sites on the Internet. These
might be a perfectly adequate solution for most people, but I still would like to
have some control over the software that I use. Moreover, I would like to
integrate my Weblog into the rest of my site and domain, meaning that I need
to install it on my own system.

 COREBlog

If you are looking for the open-source Weblog package with the simplest
installation, and if you already are familiar with the Zope application server, you
might want to consider COREBlog. COREBlog, written by Atsushi Shibata, is an
actively developed Zope product, or plugin module.

Zope, as I have mentioned in previous installments of this column, is an open-
source application server written and distributed by Zope Corporation. Zope is
written largely in Python and is object-oriented, using an object database
(ZODB) to store most of its core information. Zope development is quite
different from other languages and application servers, and adjusting to its
mindset can take some time and effort. But it also is quite flexible, making it
easy for developers to add their own modules (products) to the system.

COREBlog comes as a standard tarball, which must be opened in the lib/
python/Products directory under your Zope root directory. As of this writing,
the latest version of COREBlog is 0.53b, which arrives on your system as a file
named COREBlog053b.tgz system when you download it from
www.coreblog.org. The following instructions assume that the environment
variable ZOPE is set to Zope's root installation directory (/usr/local/zope on my
system) and that the tarfile for COREBlog is in /tmp:

cd $ZOPE/lib/python/Products
tar zxvf /tmp/COREBlog053b.tgz
chown -R zope.zope # Or appropriate owner/group

Restart Zope, either manually or from the Web interface in its control panel,
and COREBlog automatically is added as an available product.

To use COREBlog, you need to create an instance of the product from the Add
menu in the upper-right corner of the screen. Point your Web browser to the /
manage URL on your site (for example, www.example.com/manage), and select
COREBlog. You are asked to provide an ID (a unique name to appear in the

http://www.coreblog.org

URL), as well as a title (which appears as the name of the Weblog) and a
character encoding (which defaults to ASCII and which I normally change to
UTF-8, for full Unicode support).

At this point, the Weblog is almost ready to be unveiled to the world. We can
view the Weblog using a URL that ends with the ID we assigned to it (for
example, /atf), or we can administer it by appending the /manage path to that
name (in our case, /atf/manage).

Because every posting in COREBlog must be associated with at least one
category, we must create at least one category before we can begin to post.
Indeed, a warning in red tells us we must add a category before continuing. A
Categories tab resides on our blog management screen; click on it, and you are
invited to add a new category. We also can rename categories and see how
many postings are associated with each category.

Once we have created a category, we can click on the Entries tab and begin to
enter new postings. Each entry consists of a minimum of a title, body and
category. Other items are either optional or defaults to reasonable values, such
as the current date and time. When you have finished posting an item to the
blog, you can preview it (which I highly recommend) with the Preview button or
publish it right away with the Add button. Once you have published the story, it
is visible to the entire world. Anyone reading your Weblog can see the new
posting at the top of the page.

But someone doesn't have to look at the top of the page in order to notice the
new posting. The recent entries area of the sidebar contains links to each of the
most recent postings. The calendar has a hyperlink to all of the postings made
on a particular day. And clicking on the topic displays all entries on that topic.
This works only for topics, though, not for subtopics.

 Customization

The easiest way to customize COREBlog is to use the Web-based properties
editing tool, labeled Settings. The Settings tab allows you to write and edit the
content and behavior of the various pages on the site. For example, you can
write a bit about yourself or your Weblog or indicate that comments are to be
moderated by default. If you are interested in changing the fonts and colors in
which your blog is displayed, click on the Skins tab to gain access to such
information.

You can customize COREBlog further by modifying the DTML pages used to
display output. In particular, you can change the sidebar (along the right side of
the page) by modifying files in COREBlog/dtml/modules (under $ZOPE/lib/
python/Products). These pages are written in DTML, Zope's original server-side

templating language. The file index_html.dtml does nothing more than invoke
and use each of the other files in the directory:

<dtml-var calendar>
<dtml-var about>
<dtml-var recent_entries>
<dtml-var recent_comments>
<dtml-var recent_trackbacks>
<dtml-var categories>
<dtml-var archives>

In order to change the order of modules or which modules appear at all, simply
modify index_html.dtml. You also can create your own modules, write new
DTML files and use the COREBlog API to retrieve information about what has
been said and done on the blog.

Of course, because COREBlog is an open-source product, you can view and
modify any part of it you like. To be honest, there isn't much to modify; most of
the features in COREBlog probably are ones that you want to include in your
Weblog. Given that the project is under active development, new features
should be added soon.

 Syndication

When you become an established blogging pundit, people will turn to your site
several times a day, looking for your latest wisdom and pointers to interesting
links. People who follow more than one blog or who want to integrate Weblogs
with some news sources use an aggregator program to collect content from
various sites. Aggregators do not look at the HTML directly; rather, they retrieve
the syndication feed as distributed in RSS.

COREBlog makes it easy to syndicate your site. Indeed, you don't need to do
anything in order to syndicate postings on your Weblog. COREBlog takes care
of this for you automatically, providing both the popular RDF and RSS formats.
There is nothing to configure in order for syndication to work; COREBlog comes
with working syndication out of the box.

 Conclusion

Content management systems are wonderful for organizations that need them.
But if you are running a Web site by yourself, a full-fledged CMS probably is
overkill. Many individuals have begun to publish Weblogs in the last few years,
and although Weblog software still is in a relatively early stage, such products
do make it easy for an individual to get started publishing articles on a regular
basis, in an easy-to-understand, standard format. COREBlog is one open-source
application for creating and managing Weblogs, and it seems to do an excellent

job of offering the basics. It also provides a plugin architecture so new modules
can be added to the system without having to restart it from scratch. Next time,
we continue on our tour of open-source Weblog software, comparing some
other packages to COREBlog.

Resources

COREBlog is available from www.coreblog.org. Zope is available from
www.zope.org, and Python is available from www.python.org.

A good introduction to trackback is written by the authors of Movable Type; see
www.movabletype.org/trackback/beginners or www.cruftbox.com/cruft/docs/
trackback.html.

For information about RSS and syndication, take a look at www.xml.com/pub/a/
2002/12/18/dive-into-xml.html or www.webreference.com/authoring/
languages/xml/rss/intro/2.html.

Reuven M. Lerner, a long-time consultant in Web/database programming, is
now a graduate student in Learning Sciences at Northwestern University in
Evanston, Illinois. You can reach him at reuven@lerner.co.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.coreblog.org
http://www.zope.org
http://www.python.org
http://www.movabletype.org/trackback/beginners
http://www.cruftbox.com/cruft/docs/trackback.html
http://www.cruftbox.com/cruft/docs/trackback.html
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://www.webreference.com/authoring/languages/xml/rss/intro/2.html
http://www.webreference.com/authoring/languages/xml/rss/intro/2.html
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Kernel Korner

The Hidden Treasures of iptables

Chris Lowth

Issue #120, April 2004

With these powerful add-ons for iptables you can match strings or port ranges
in iptables rules or even create a tar pit for network abusers.

Linux's iptables allows powerful firewalls to be implemented at a minute
fraction of the cost of many commercial offerings. Basic iptables firewalls are
packet filters, which means they inspect the network communications flowing
through them a packet at a time and make choices about how those packets
are handled. Simple configurations can be used to drop certain packets and
accept others. The choice about which policy to apply to a particular packet
commonly is made on the basis of the IP address and port number to which it
has been sent and the direction in which it is traveling. iptables also can use
state information to make more-informed choices based on the state of the
connection to which the packet relates. This is known as connection tracking.

A simple and highly effective firewall configuration blocks inbound TCP/IP
connection packets and UDP exchanges initiated from the public Internet while
allowing outbound ones over translated addresses. This gives users free access
to the outside world while protecting them from unwelcome intrusions. Such
configurations are a bit simplistic and may need additional filters to be truly
useful, but the basic concept is straightforward.

iptables has a lot more to offer than these simple packet-filtering criteria. Some
of the extras are fairly well known and even may make their way into some off-
the-shelf Linux distributions, but some lesser-known features are worthy of
investigation. These are the hidden treasures I intend to point you toward in
this article. It would take a book to describe all the possible features and
options associated with them, so all I do here is flag their existence and put you
on the path of exploration.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Introducing the POM

Netfilter has two groups of components, the kernel and user-mode pieces. The
user-mode group consists of the iptables and related utilities, libraries, manual
pages and scripts. The kernel components are patches to existing kernel
sources and a number of extra modules.

Applying patches to a system as large and complex as the Linux kernel can be a
daunting task to the uninitiated, and the road is littered with traps and
potential blind turns. A bad or incompatible patch readily can produce a kernel
that doesn't compile, or worse, doesn't boot. The Netfilter team has sought to
resolve these difficulties by providing us with a robot guide, POM, or Patch-o-
matic. POM is a collection of patches and a script for applying them to your
kernel, and it's a joy even for a relative novice to use.

The kernel patches included with POM are classified into a number of groups
according to their history and quality. Some of them are base patches needed
in every iptables/Netfilter installation. Others are optional or experimental
extras that provide interesting features, some of which I describe in this article.
These are the promised hidden treasures, what the POM documentation
describes as “Maybe broken, Maybe cool extensions.”

Running POM is simple; download the latest Patch-o-matic tarball from the
directory /pub/patch-o-matic on ftp.netfilter.org, restore it on your system and
run the following command while logged in as root. Make sure to give the
correct kernel source directory name as the value of the KERNEL_DIR
parameter:

KERNEL_DIR=/usr/src/linux-2.4 ./runme extra

From there, installation is interactive and more or less self-explanatory.

 Bits of String

ftp://ftp.netfilter.org
https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f1.large.jpg

The string module probably is the most widely used extra from the POM trove.
It allows packets to be matched against strings occurring anywhere in their data
payload. This module has all sorts of uses but needs to be applied carefully so
as not to be overzealous. One possible use is to block the downloading of ELF
executables from the Web. We can set up a filter that identifies Web return
traffic by looking for TCP/IP packets coming from the Internet-facing interface
with a source port of 80. If we know that an ELF file starts with hex character 7f
followed by the letters ELF (which it does), we can use the string match to
search for this sequence. Non-ASCII characters can be embedded in the string
by using the pipe symbol to enclose them, so we use |7F|ELF. Assuming that
the Internet-facing network interface is eth0, the command is:

iptables -A FORWARD -i eth0 -p tcp --sport 80 \
 -m string --string '|7F|ELF' -j DROP

https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f1.large.jpg

The syntax for embedding hex characters into the string was introduced in
iptables 1.2.8. If you are using an earlier version, you need to resort to trickery.
For example:

--string "`dd if=/bin/ls bs=4 count=1 2>/dev/null`"

takes the first four characters of /bin/ls, which is an ELF file that contains the
string we want.

We can expand this example by declaring that we trust the content from
192.168.0.5 and, therefore, don't want to apply the filter to that server. This is
done easily by adding an inverted match on the IP address, like this:

iptables -A FORWARD -i eth0 -p tcp ! \
 -s 192.168.0.5 --sport 80 -m string \
 --string '|7F|ELF' -j DROP

This example has a couple of problems that highlight the issues with the string
match module. First, the rule matches any packet that contains this sequence
anywhere in the data, not only at the start of the file. This means the rule could
match false positives and block packets we didn't intend. Second, if the string
we are looking for actually is split over two adjacent packets, it isn't matched.
The module needs the entire string to appear in a single packet.

So, the string module is useful but basic. It doesn't allow for case-insensitive
matches or for the location of the string to be specified, nor does it allow
strings to be found when split over multiple packets in the data stream. There
is plenty of scope for an extended version of this module to be written.

 Fewer Rules with mport

https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f2.large.jpg

The mport extension allows a single rule to specify a number of port numbers
and ranges using an extended syntax. Without mport, the iptables command
can specify either a single port or a range of adjacent ports in a single
command. With mport in place, the syntax allows more complex constructs. For
example, we could permit X terminals, Web and mail with a single command,
like this:

iptables -A INPUT -p tcp -m mport \
 --dports 80,110,21,6000:6003 -j ACCEPT

Without using mport, this would have to be specified using four separate
commands:

iptables -A INPUT -p tcp --dports 80 -j ACCEPT
iptables -A INPUT -p tcp --dports 110 -j ACCEPT
iptables -A INPUT -p tcp --dports 21 -j ACCEPT
iptables -A INPUT -p tcp --dports 6000:6003 \
 -j ACCEPT

Using a single rule in place of four offers a potential performance advantage
because packets passing through the system require less processing. It also

https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f2.large.jpg

makes the maintenance of the rules files easier because services requiring
identical processing can be grouped together easily. As you probably guessed,
mport is short for multiple ports.

 Time-Based Rules

The time module allows rules to introduce the time of day and the day of the
week into matching logic. Example uses would be to allow access to personal
Web sites only during the lunch hour or to divert Web traffic to a secondary
server during routine maintenance periods. The following example renders the
Web service inaccessible between the hours of 4 and 6:30am on Fridays,
presumably for system maintenance:

iptables -A INPUT -p tcp -d 80 -m time \
 --timestart 04:00 --timestop 06:30 --days Fri \
 --syn -j REJECT

It is worth noting that the -timestart, -timestop and -days options all must be
specified. So if you want a rule that is not day-of-week dependent, you must
specify all seven day names; you can't omit the option.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f3.large.jpg

 Getting Bogged Down—Tar Pits

You really don't want to wander into a tar pit if you value your life or appreciate
changes of scenery. They are nature's equivalent of fly paper; come too close
and you won't leave in a hurry. The TARPIT component of iptables is the
networking equivalent: if you are unwise enough to establish a TCP/IP
connection to a port that is a tar pit, you will find it hard to close the connection
and release the used system resources for future use.

To achieve this tar pit state, iptables accepts the incoming TCP/IP connection
and then switches to a zero-byte window. This forces the attacker's system to
stop sending data, rather like the effect of pressing Ctrl-S on a terminal. Any
attempts by the attacker to close the connection are ignored, so the connection
remains active and typically times out after only 12–24 minutes. This consumes
resources on the attacker's system but not the Linux server or firewall running
the tar pit. You could use the following iptables command to pass packets to
the pit:

iptables -A INPUT -p tcp -m tcp -dport 80 -j TARPIT

https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f4.large.jpg

You probably don't want to use conntrack and TARPIT on the same system,
particularly if you anticipate catching a lot of flies with this particular brand of
fly paper. Each stuck connection consumes conntrack resources.

One way to confuse potential attackers is to make your Linux system look like a
Microsoft Windows machine by causing the netbios ports to respond to port
scans. Then pass any connection requests to the tar pit. This has the effect of
wasting attackers' time while they sense a possible opening and try to gain
access. They will be frustrated by long timeouts and an apparently buggy
target. Rules such as the following produce this result:

iptables -A INPUT -p tcp -m tcp -m mport \
 --dports 135,139,1025 -j TARPIT

Another possibility is to TARPIT all ports except the ones you genuinely want to
use. This again leads outsiders to see every port as open and waste time
attempting to gain access. Moreover, a configuration like this prevents
tcpdump from correctly determining the operating system running on the
server. In this example, we allow Web and e-mail traffic and bog down
everything else:

iptables -A INPUT -p tcp -m tcp --dport 80 -j ACCEPT
iptables -A INPUT -p tcp -m tcp --dport 25 -j ACCEPT
iptables -A INPUT -p tcp -m tcp -j TARPIT

You can find an interesting real-life story of how TARPIT and string helped one
particular system administrator (not me) at www.spinics.net/lists/netfilter/
msg17583.html.

 Randomizing

http://www.spinics.net/lists/netfilter/msg17583.html
http://www.spinics.net/lists/netfilter/msg17583.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f5.large.jpg

The random match module matches packets based on nothing more than a
random choice. You can tune the logic by setting the probability that a packet is
matched anywhere between 0% and 100% of the time. Example applications
include simulating a faulty connection or server or distributing load across
multiple mirrored Web servers. The example below distributes Web traffic
among three servers. The first rule sends 33% of the connections to the server
at 192.168.0.100. The next 33% is sent to 192.168.0.101 and the last third
catches the remainder and passes them to 192.168.0.102:

iptables -t nat -A PREROUTING -i eth0 -p tcp \
 --dport 80 --syn -m random --average 33 \
 -j DNAT --to-destination 192.168.0.100:80

iptables -t nat -A PREROUTING -i eth0 -p tcp \
 --dport 80 --syn -m random --average 50 \
 -j DNAT --to-destination 192.168.0.101:80

iptables -t nat -A PREROUTING -i eth0 -p tcp \
 --dport 80 --syn -j DNAT \
 --to-destination 192.168.0.102:80

https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7180f5.large.jpg

As before, this assumes that eth0 is the Internet-facing interface.

 A Lot More Where They Came From

Dozens of treasures can be dug up and enjoyed. I have described a small
handful here, but there are plenty more. Simply running the runme script and
reading the patch descriptions as they are displayed is one way of getting an
idea of what is available. Here are a few more examples of what you can find:

• Connection tracking for RSH, MMS (media streaming), PPTP, Quake, RPC
and Talk.

• Extended support for configuration and status information access
through the /proc filesystem.

• Extended support for IPv6 features.
• Manipulation of options, TTL and more in IP packets.
• Finer control over NATed connections.
• Control over limits on quota and bandwidth usage.
• Anti-OS fingerprinting logic and port-scan detection.
• Connection marking (and mark testing).

 Sources of Wisdom

The patches added with POM don't add their descriptions to the iptables man
page, so we need to turn elsewhere for documentation. The basic syntax used
to invoke these extensions can be displayed using the iptables built-in help
facility. For example, iptables -m random -help gives the usual help
message but with the random module's parameters displayed at the end. The
same technique can be applied to the other modules.

You also can refer to the module help files held in the Patch-o-matic directory
structure. The file for random is base/random.patch.help. Similar files can be
found for the other patches.

Finally, make use of the Netfilter Web site, www.netfilter.org/patch-o-matic,
which contains a description of each of the POM patches.

 Installing New iptables Modules

The majority of iptables extensions have two parts, a patch to the Linux kernel
and a configuration helper library for use by the iptables user-space program.
The detailed procedure for adding a POM module to the kernel and the iptables
tools is outlined at www.lowth.com/howto/add-iptables-modules.php. In
summary, the steps we need to take are bring your system up to date;
download the latest Patch-o-matic sources; patch the kernel using the runme

http://www.netfilter.org/patch-o-matic
http://www.lowth.com/howto/add-iptables-modules.php

script; recompile and install the patched kernel; and recompile and install the
iptables software.

 Conclusion

We have seen that Linux's Netfilter provides an excellent set of features for
building effective firewalls, but not all of these features are installed by default
on many Linux distributions. The Patch-o-matic software allows administrators
to extend the base functionalities of their firewalls through an automated
approach to patching the Linux kernel.

To finish, take this thought with you: we have seen that iptables/Netfilter has a
number of exciting possibilities hidden away from initial inspection. The
chances are high that the same is true for other packages. This is part of the joy
of open-source software; nothing is truly hidden. Everything that exists is
waiting there for the skilled seeker to find.

Acknowledgement

To Jane Lowth for drawing the figures of Tux.

Chris Lowth works as a consultant for Intercai Mondiale (www.intercai.co.uk), a
UK-based telecommunications, IT and business consultancy. He designs
security software and network management (OSS) solutions and attempts to
play the guitar. Chris can be contacted at chris@lowth.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.intercai.co.uk
mailto:chris@lowth.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Cooking with Linux

François, Can You Keep a Secret?

Marcel Gagné

Issue #120, April 2004

Learn the fundamentals of public key encryption and how to plug the GNU
Privacy Guard in to your existing mailer.

It really is a shame François, but we simply will have to make sure it is available
for next time. Everything else looks perfect, mon ami; all the workstations
booted up to a login. Wonderful! Ah, I see that our guests are here! François,
head down to the east wing of the wine cellar. There is a small cache of 1999
Côte-Rôtie next to that old sealed-in door. Yes, the door we never were able to
open. Vite, François! I promise you there is nothing frightening down there.

Please sit, mes amis. We have an almost perfect menu for you today, but sadly
it's missing one item. Still, the Côte-Rôtie Rhône, red that is both sexy and
mysterious, should help take away from its absence. I had so wanted to
prepare my famous Crème Linuxaise for you today, but there were problems.
You see, the Linuxaise is an old and secret family recipe, and I could not risk it
falling into the wrong hands. Nor could I risk sending it by e-mail for fear of it
being intercepted or read by a network sniffer; otherwise, François could have
prepared it in advance. It is that secret!

Next time, however, will not be a problem. I am setting up all users at the
restaurant with GnuPG and public key encryption so that sensitive
communications can be sent without fear. GnuPG is the GNU Privacy Guard, a
program that makes it possible to encrypt messages and data in general. It is a
patent-free, open-source replacement for PGP (Pretty Good Privacy). A number
of Linux e-mail packages allow you to send and receive encrypted e-mails using
GnuPG, and this is what I'd like to show you today. Most modern distributions
have GnuPG included, so if you don't have it on the system, check your CD first.
You also can find the latest version at www.gnupg.org, but first, a little
background.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.gnupg.org

Now, where was I? Ah, yes. Historically, all encryption methods worked on the
premise of a shared key file. You would give the person with whom you wanted
to communicate the same key by which the message was encoded. Think secret
decoder ring and you aren't far off the mark. The catch is that anyone
intercepting the key then could decipher all your messages. With GnuPG,
messages are encrypted with two keys, one being your private key, which you
guard jealously and never hand out to anyone. When I encode a message, I do
so by combining my private key with a public key, not my public key, but one
supplied to me by the person with whom I want to communicate, François, for
instance. Both keys are required for the encryption/decryption process, and
anyone having one-half of the key pair has nothing, which is why you never
hand out your private key. To get in on this top-secret action, you need to
create a key pair, containing both your private and jealously guarded key and
your public key, the one you hand out to all your friends. Here is the command:

gpg --gen-key

What follows is a small question-and-answer session. The first question has to
do with the encryption algorithm, or cipher. The default is DSA and ElGamal.
Accept the default. When asked about key length, you can choose from 768,
1,024 and 2,048 bytes. Because the DSA standard is 1,024, choose that for now.
Then, you are asked for the expiration date of your key, the default being no
expiration date. You can, however, define days, weeks, months and even years.
For now, choose the default and confirm your choice. Finally, you are asked to
supply the name of the key user, the e-mail address and a comment.

It's all over but the passphrase, which is your final step. Make sure you choose
something secure but also something that you can remember. When you have
entered your phrase, the GnuPG program generates your secure key pair. After
the command completes its work, you can verify the result by looking in the
.gnupg directory in your home directory:

$ cd /home/marcel/.gnupg
$ ls
gpg.conf pubring.gpg random_seed
secring.gpg trustdb.gpg

The gpg.conf file contains a list of default options for the gpg command and
makes for good reading. The pubring.gpg and secring.gpg files are particularly
important. Make backups of these files immediately and store them
somewhere other than your computer and never lose them—the secring.gpg
file contains your personal secret key. The last file, trustdb.gpg, is your
database of trust. It defines the level of trust that you assign to the public keys
you collect.

Users need to exchange keys in order to exchange encrypted information. As
you might guess, the option to export a key is --export, but you may want to
include the -a option as well to confine the output to ASCII format:

gpg -a --export 3E2FCF7D > marcelkey.asc

The resulting file is a simple ASCII text file; how you get it to the other person is
up to you. There are key servers where you can upload your public keys so that
anyone can download them (which makes it easier for large-scale distribution),
key-signing parties where groups get together and exchange public keys or e-
mail attachments. The recipient then could import the key like this:

gpg --import marcelkey.asc

At any point, you can choose to see the keys in your key ring with:

gpg --list-keys

The results of that command depend on how many keys you have, but the
following should give you an idea of what to expect. In particular, take note of
the hexadecimal number following the 1024D. That is the key ID to which you
will be referring in the future:

/home/marcel/.gnupg/pubring.gpg

pub 1024D/3E2FCF7D 2004-01-07 Marcel Gagné
↪(Writer and Free Thinker at Large) <mggagne@salmar.com>
sub 1024g/B24717BE 2004-01-07

pub 1024D/EE392B87 2004-01-07 Francois
↪(I am but a humble waiter) <francois@salmar.com>
sub 1024g/F4E07040 2004-01-07

Before you can start your friend's key to encrypt e-mail messages, you need to
sign the key to verify its authenticity. This involves doing two things. If you are
absolutely, positively sure of the key's origins, you might skip the first step,
which is to get the key's fingerprint:

$ gpg --fingerprint francois
pub 1024D/EE392B87 2004-01-07 Francois
↪(I am but a humble waiter) <francois@salmar.com>
Key fingerprint = 8C5B 775C 33F8 E97C 5ADC
↪019D C6C8 4B83 EE39 2B87
sub 1024g/F4E07040 2004-01-07

Notice that I used the person's name in the above command, which is part of
the key information. If you have more than one person with that name in their
key information, specify the key ID instead. To verify this fingerprint, ask your
friend to check the fingerprint of his or her personal key in exactly the same
way. The final step is to sign the key. You do that with the --edit-key option:

gpg --edit-key francois

The whole process isn't too complicated. You are asked to confirm that you
really, genuinely want to sign this public key; you are asked to confirm again
with your passphrase. You need to do this with all the people with whom you
want to exchange encrypted e-mail. Once finished, however, let the secret
messages flow.

Incidentally, a number of nice, graphical utilities for GnuPG exist, essentially
friendly wrappers for the command-line utility. KDE comes with a slick utility
called KGpg that integrates nicely with the desktop and the e-mail system. For
instance, if someone sends you a public key as an attachment in KMail and you
have started KGpg (command name: kgpg), rather than having to save the
attachment to a file, drop down to the command line and perform the above
steps. You should get a friendly pop-up like the one in Figure 1.

Figure 1. KMail confirms key imports.

With this tool, which docks in your panel, you can edit keys; add, remove and
change trust levels; and do all those things you can do with command-line
GnuPG but with a click of your mouse. You even can do key server lookups over
the Net and use photo IDs as well. Its integration with other KDE tools means
you can drag and drop to encrypt or access GnuPG functions with a click from
Konqueror or the clipboard. KGpg is an add-on to KDE 3.1, but with the release
of KDE 3.2, it will become part of the standard distribution. Figure 2 shows
KGpg in action.

Figure 2. KGpg makes key management easy.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7354f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7354f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7354f2.large.jpg

Another graphical administration tool worth your time is gpa. This is the default
GNU Privacy Assistant and the official key ring editor of the GnuPG Project. It
also is available from www.gnupg.org.

Now, it's time to send out those encrypted e-mails. Open KMail, click on
Settings in the menubar and choose Configure KMail, after which the Configure
KMail dialog appears. In the sidebar to the left, find the icon labeled Security,
and click it (Figure 3).

Figure 3. Configuring KMail to Use GnuPG Encryption

The new window to the right has three tabs: General, OpenPGP and Crypto
Plugins. We are interested in the OpenPGP tab. On that tab, look at the drop-
down box labeled Select encryption tool and choose GnuPG - GNU Privacy
Guard from the list. For the time being, don't choose to sign and encrypt all
messages automatically. You might, however, want to keep the passphrase in
memory; you still are asked the first time an encrypted message is
encountered. Click Apply.

Next, click on the Identity tab to the left. Unless you have defined multiple e-
mail identities, there should be only one entry. Click Modify, and select the
Advanced tab from the resulting dialog. In the middle of that panel (Figure 4) is
a space for OpenPGP key. That's your personal private key. Click Change here
to open another window from which you can select your private key
information.

http://www.gnupg.org
https://secure2.linuxjournal.com/ljarchive/LJ/120/7354f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7354f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7354f3.large.jpg

Figure 4. Specifying Your Public Key with KMail

When finished, click OK to close the Edit Identity window, and click OK again to
close the Configure KMail window. In order to reload the keys into KMail
properly, you may have to shut down KMail and restart it.

You now are able to send encrypted e-mails, in principle at least. If you already
have your friend's public key in your key ring and you have signed the key,
nothing is left to do but write your e-mail. Start a new message, and write what
you need to write. When you are ready to send, click Options on the message's
menubar. Notice two interesting options here related to encryption. One says
Sign Message, and the other says Encrypt Message.

Signing a message makes use of your key by attaching an electronic signature
to your message but not encrypting it. The person receiving the message then
has a means of verifying that the message did indeed come from you, should
they want to verify it. Because the message is not encrypted, anyone still can
read it. This is simply a means to confirm that the message came from the
person who claims to have sent it. Encryption goes one step further in that you
are using your friend's public key to encrypt the message. In both cases, KMail
asks you for your passphrase before sending the message.

Unfortunately, not all e-mail packages follow the same rules for encryption.
That would be too simple, non? Let's use the two gentlemen at table 17, Larry
and Michael, in a hypothetical scenario. Each needs to send the other sensitive
corporate information, so the information must be encrypted. Larry uses
Evolution and Michael uses KMail. We already have covered KMail for sending
encrypted mail, so let's spend a moment looking at the process in Ximian
Evolution.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7354f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7354f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7354f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7354f5.large.jpg

Figure 5. Evolution's Mail Account Editor

With Evolution open, click on your inbox. Now, click Tools on the menubar and
select Settings. You now are looking at the Evolution Settings window (Figure 5).
If the Mail Accounts icon in the left-hand sidebar isn't selected, click to select it
now. Most people have one main account. If you have more than one, select
the one you want to use with encryption and click the Edit button to the right.
The Account dialog appears with several tabs along the top. The one you are
interested in is labeled Security. Look for a field labeled PGP/GPG Key ID and
enter your key ID there. Click OK to close that dialog, then OK again to get out
of the Evolution Settings window.

Assuming that Larry and Michael already have exchanged public keys, Larry
now is ready to send encrypted e-mail. To do so, he composes an e-mail
normally. When he is ready to send, he clicks Security on the menubar and
selects PGP Encrypt. When he clicks Send, Larry is asked for his GPG
passphrase. Once entered, the message is sent. Before I move on, I should
mention that you can select PGP Sign from the Security menu if all you want to
do is sign the message.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7354f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7354f5.large.jpg

Figure 6. Specifying Your GnuPG Key in Evolution

As wonderful as all this encryption and decryption stuff is, there are some
problems. For instance, many packages (including KMail) will encrypt the
message in-line, but a few others, such as Evolution, do not. Instead, encrypted
messages are MIME attachments. Consequently, reading a message from KMail
(or Eudora or Outlook) in Evolution requires that you save the message as a
text file. You then can decrypt it with this:

gpg -d message.txt

To read an Evolution-encrypted message sent to KMail (and a few others) you
need to save the attachment as opposed to the message itself. Decrypting it is
the same process as above.

Many e-mail clients are available in the Linux world. KMail and Evolution are
popular graphical choices, but so is Mozilla. For users of Mozilla, a plugin called
Enigmail allows for seamless encryption and signing of messages. Text-based
clients also support encryption, either on their own or through plugins; mutt
and pine are popular examples.

Mon Dieu! Has the time gone by so quickly? I fear, mes amis, that closing time is
upon us once again. François will refill your glasses once more before you go.
As you leisurely sip that last glass, take some time to create and exchange

public keys with one another. Perhaps I may be convinced to share the Crème
Linuxaise with some of you—assuming proper security precautions, of course.
Who knows, our security may be the very reason that door in the wine cellar
remains tightly shut! Until next time, mes amis, let us all drink to one another's
health. A vôtre santé! Bon appétit!

Resources

Gnu Privacy Guard (GnuPG): www.gnupg.org

KMail: kmail.kde.org

Mozilla: www.mozilla.org

Mozilla Enigmail: enigmail.mozdev.org

Ximian Evolution: www.ximian.com/products/evolution

Marcel's Web Site (check out the wine page): www.marcelgagne.com

Marcel Gagné (mggagne@salmar.com) lives in Mississauga, Ontario. He is the
author of Moving to Linux: Kiss the Blue Screen of Death Goodbye! (ISBN
0-321-15998-5) from Addison Wesley. His first book is the highly acclaimed
Linux System Administration: A User's Guide (ISBN 0-201-71934-7). In real life,
he is president of Salmar Consulting, Inc., a systems integration and network
consulting firm.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.gnupg.org
http://kmail.kde.org
http://www.mozilla.org
http://enigmail.mozdev.org
http://www.ximian.com/products/evolution
http://www.marcelgagne.com
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Paranoid Penguin

Application Proxying with Zorp, Part II

Mick Bauer

Issue #120, April 2004

The Zorp proxy server works with the kernel Netfilter to make an application-
level proxy that looks transparent to the client.

In my last column, I sang the praises of application-layer proxy firewalls and
introduced Balazs Scheidler's Zorp firewall suite, available in both commercial
and free-of-charge versions. This column continues where we left off,
discussing basic Zorp configuration for a simple inside-DMZ-outside scenario.
We are going to configure only a couple of services, but this should be enough
to help prospective Zorp users begin building their own intelligent firewall
systems.

To review, application-layer proxies broker rather than merely pass the traffic
that flows through them. For example, when a user on one network initiates an
HTTP session on the other side of a proxying firewall, the firewall intercepts and
breaks the connection, acting both as the server (from the client's viewpoint)
and as the client (from the destination server's standpoint).

Zorp uses transparent proxies, which means that users behind a Zorp firewall
need not be aware that the firewall is there; they may target foreign addresses
and hostnames without configuring their software to communicate with the
proxy. This is an important mitigator against the ugly fact that proxies are
inherently more complicated than other kinds of firewalls. With Zorp, all the
complexity is in the back end, resulting in much happier end users.

But that doesn't mean Zorp is painful for its administrators, either. I'd rate its
complexity as being higher than iptables but lower than sendmail.cf. So without
further ado, let's configure ourselves a Zorp firewall.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Assumptions

This article assumes that, per my last column, you've successfully patched your
Linux 2.4 kernel and your iptables binary to support the TPROXY module (see
www.balabit.com/products/oss/tproxy). It also assumes you have compiled
and/or installed packages for libzorpll, zorp and zorp-modules; source code and
deb packages are available at www.balabit.com/products/zorp_gpl. My
examples further assume you're running Zorp GPL version 2.0, though the
examples should apply equally to Zorp Pro 2.0. Zorp Pro has some proxy
modules not included with Zorp GPL, but the modules common to both behave
the same.

 The Scenario

Zorp supports many more than three interfaces per firewall, but the most
common firewall architecture nowadays is the three-homed-host architecture
shown in Figure 1. This is the architecture I cover here.

Figure 1. Example Architecture

Similarly, as you can see in Figure 1, we've got only three data flows: HTTP from
the Internet to a DMZed Web server; HTTP from the internal network to the
Internet; and HTTP and SSH from the internal network to the DMZ. Absent are
things like IMAP, NNTP, FTP and other services that even simple setups
commonly use. If you understand how to configure Zorp to accommodate

http://www.balabit.com/products/oss/tproxy
http://www.balabit.com/products/zorp_gpl
https://secure2.linuxjournal.com/ljarchive/LJ/120/7347f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7347f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7347f1.large.jpg

these, though, you should be able to figure out others. I do, however, discuss
DNS and SMTP, even though I omitted them from Figure 1.

 Configuring a Dummy Interface

The first thing we need to do doesn't directly involve Zorp but rather the
TPROXY kernel module. In transparent proxying, TPROXY needs a dummy
network interface to bind to whenever it splits a data flow in two. This needs to
be an interface whose IP address is neither Internet-routable nor associated
with any network connected to the firewall.

Linux 2.4 kernels compile with support for dummy network interfaces by
default. You should have one, unless you intentionally compiled your kernel
without dummy driver support. If so, compile a new kernel with dummy
support. All you need to do for TPROXY's purposes, therefore, is explicitly
configure dummy0 with a nonroutable and unused address. In Debian, you
should add the following lines to /etc/networking/interfaces:

auto dummy0
iface dummy0 inet static
 address 1.2.3.4
 netmask 255.255.255.255

Other distributions handle network configuration differently—Red Hat and
SuSE use ifcfg- files in /etc/sysconfig/network—but hopefully you get the
picture. Notice the 32-bit network mask: I repeat, this address must not belong
to a real network.

 iptables Configuration

You may be wondering, isn't this article about Zorp and not iptables? Yes, but
Zorp runs in conjunction with iptables, not in place of it. TPROXY, in fact, is
specifically a Netfilter patch. To use TPROXY, we need to configure it with the
iptables command, as we do for the rest of Netfilter. (Netfilter is the proper
name for Linux 2.4's firewall code—iptables is its front-end command.)

In addition, it's recommended that you run certain services, namely DNS and
SMTP, on the firewall as self-contained proxies. If you do, you need to use
iptables to configure your firewall to accept those connections directly. For
example, BIND v9 supports split-horizon DNS, in which external clients are
served from different zone files than are internal clients. Similarly, Postfix is
easy to configure to act as a relay on behalf of internal hosts, but strictly as a
local deliverer when dealing with external hosts. It makes sense to run such
proxy-like services on a firewall, as long as you configure them extremely
carefully.

If you're new to Netfilter/iptables, what follows may make little sense, and
space doesn't permit me to explain it all in detail. Zorp is, after all, an advanced
tool. In a nutshell, what we're going to do with iptables is run all packets
through some simple checks against spoofed IP addresses. We then are going
to intercept packets that need to be proxied transparently and process them in
custom chains rather than by using the normal FORWARD chain. Technically,
nothing is forwarded. Finally, we pass some packets that are destined for the
firewall itself.

Zorp Pro includes a group of scripts collectively called iptables-utils, which
simplify iptables management for Zorp. A free version of iptables-utils for Zorp
GPL 2.0 is available at www.balabit.com/downloads/zorp/zorp-os/pool/i/
iptables-utils. I highly recommend iptables-utils, as it makes it much easier to
test a new iptables configuration before actually committing it.

Because it uses a syntax that I don't have space here to explain, the following
example is instead a conventional iptables startup script. Here are the most
important parts of such a script. First should come rules for the special tproxy
table that the TPROXY module adds to Netfilter (Listing 1). This is where we
define a custom proxy chain for each of our networks: PRblue for proxied
connections initiated from our internal network; PRpurple for proxied
connections initiated from our DMZ (none, in this scenario); and PRred for
proxied connections originating from the Internet.

Listing 1. TPROXY Rules

iptables -t tproxy -P PREROUTING ACCEPT
iptables -t tproxy -A PREROUTING -i eth1 -j PRblue
iptables -t tproxy -A PREROUTING -i eth2 -j PRpurple
iptables -t tproxy -A PREROUTING -i eth0 -j PRred

iptables -t tproxy -P OUTPUT ACCEPT

iptables -t tproxy -N PRblue
iptables -t tproxy -A PRblue -p tcp --dport 80 \
 -j TPROXY --on-port 50080
iptables -t tproxy -A PRblue -p tcp --dport 22 \
 ! -d firewall.example.net -j TPROXY --on-port 50022

iptables -t tproxy -N PRpurple

iptables -t tproxy -N PRred
iptables -t tproxy -A PRred -p tcp --dport 80 \
 -j TPROXY --on-port 50080

Several things are worth pointing out in Listing 1. First, notice that the tproxy
table contains its own PREROUTING and OUTPUT output chains. In Zorp, we
use the tproxy/PREROUTING chain to route packets to the proper custom proxy
chain (PRblue), based on the interface each packet enters. As with any custom
iptables chain, if a packet passes through one of these without matching a rule,

http://www.balabit.com/downloads/zorp/zorp-os/pool/i/iptables-utils
http://www.balabit.com/downloads/zorp/zorp-os/pool/i/iptables-utils

it's sent back to the line immediately following the rule that sent the packet to
the custom chain. This is why custom chains don't have default targets.

In the PRblue chain, we've got two rules, one for each type of transaction
allowed to originate from the internal network. All outbound HTTP material is
proxied, that is, handed to a proxy process listening on port 50080. But in the
SSH rule, we tell Netfilter to proxy all outbound SSH traffic unless it's destined
for the firewall itself. Although Figure 1 doesn't show such a data flow
(Blue→SSH→firewall), we need it in order to administer the firewall. This flow
also requires a rule in the regular filter table's INPUT chain. In this example
scenario, our DMZed Web server isn't permitted to initiate any connections
itself, so we've created a PRpurple chain without actually populating it.

Now we move on to the regular filter table, this is the Netfilter table most of us
are used to dealing with—it's the default when you omit the -t option with
iptables. Listing 2 shows our example firewall's filter table's INPUT rules.

Listing 2. Filter Table INPUT Chain

iptables -P INPUT DROP
iptables -A INPUT -j noise
iptables -A INPUT -j spoof
iptables -A INPUT -m tproxy -j ACCEPT
iptables -A INPUT -m state \
 --state ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -i lo -j ACCEPT
iptables -A INPUT -i eth1 -j LOblue
iptables -A INPUT -i eth0 -j LOred
iptables -A INPUT -i eth2 -j LOpurple
iptables -A INPUT -j LOG --log-prefix "INPUT DROP: "
iptables -A INPUT -j DROP

The first few lines check packets against some custom chains that check for
spoofed IP addresses; if they pass those checks, they continue down the INPUT
chain. Packets generated by the TPROXY module itself are accepted, as are
packets belonging to established allowed transactions and loopback packets
(lines 4–6, respectively). Next, as with the tproxy table's PREROUTING chain, we
route packets to custom chains based on ingress interface. This time, the
custom chains are for packets with local destinations, as opposed to proxied
ones, so I've named them LOblue and so forth. Next come our filter table's
custom chains (Listing 3).

Listing 3. Custom Chains in the Filter Table

iptables -N LOblue
iptables -A LOblue -p tcp --dport 22 --syn -j ACCEPT
iptables -A LOblue -p udp --dport 53 -j ACCEPT
iptables -A LOblue -p tcp --dport 25 --syn -j ACCEPT
iptables -A LOblue -j LOG --log-prefix "LOblue DROP: "
iptables -A LOblue -j DROP

iptables -N LOpurple
iptables -A LOpurple -p udp --dport 53 -j ACCEPT
iptables -A LOpurple -j LOG \
 --log-prefix "LOpurple DROP: "
iptables -A LOpurple -j DROP

iptables -N LOred
iptables -A LOred -p udp -s upstream.dns.server \
 -sport 53 -j ACCEPT
iptables -A LOred -p tcp --dport 25 --syn -j ACCEPT
iptables -A LOred -j LOG --log-prefix "LOred DROP: "
iptables -A LOred -j DROP

iptables -N noise
iptables -A noise -p udp --dport 137:139 -j DROP
iptables -A noise -j RETURN

iptables -N spoof
iptables -A spoof -i lo -j RETURN
iptables -A spoof ! -i lo -s 127.0.0.0/8 -j spoofdrop
iptables -A spoof -i eth1 ! -s 10.0.1.0/24 \
 -j spoofdrop
iptables -A spoof ! -i eth1 -s 10.0.1.0/24 \
 -j spoofdrop
iptables -A spoof -i eth2 ! -s 192.168.1.0/24 \
 -j spoofdrop
iptables -A spoof ! -i eth2 -s 192.168.1.0/24 \
 -j spoofdrop
iptables -A spoof -j RETURN

iptables -N spoofdrop
iptables -A spoofdrop -j LOG \
 --log-prefix "Spoofed packet: "
iptables -A spoofdrop -j DROP

The first three of these custom chains are the most important: LOblue,
LOpurple and LOred tell Netfilter how to process packets destined for the
firewall itself, based on in which interface the packets arrive. In LOblue, we're
accepting DNS queries, SSH connections and SMTP connections. In LOpurple,
we're accepting only DNS queries. And in LOred, we're accepting DNS replies
from our ISP's DNS server (upstream.dns.server) and SMTP connections. The
last three of these custom chains are the simplest: noise filters NETBIOS
packets, those notorious clutterers of Linux firewall logs; spoof filters for
packets with obviously spoofed, that is, impossible, source IP addresses; and
spoofdrop logs and drops packets caught by the spoof chain.

Listing 4 shows the remainder of our example iptables script, an essentially
empty FORWARD chain with a default DROP policy and an empty OUTPUT chain
with a default ACCEPT chain. Again, this is a proxying firewall, so it won't
forward anything. You may be uneasy with the default ACCEPT policy for
firewall-originated packets, but this is both necessary and safe on a Zorp
firewall.

Listing 4. The Filter Table's FORWARD and OUTPUT Chains

iptables -P FORWARD DROP
iptables -A FORWARD -j LOG \
 --log-prefix "FORWARD DROP: "
iptables -A FORWARD -j DROP

iptables -P OUTPUT ACCEPT

 Configuring Zorp's Instances

Finally, we come to actual Zorp configuration files. These are stored in /etc/
zorp, and the first one we tackle is instances.conf, which defines and controls
Zorp's instances. Usually, the rule of thumb is to define one instance per
network zone, so in our example scenario we have, you guessed it, one
instance each for our red, purple and blue zones. Listing 5 shows what such an
instances.conf file would look like.

Listing 5. instances.conf

blue -v3 -p /etc/zorp/policy.py \
 --autobind-ip 1.2.3.4
purple -v3 -p /etc/zorp/policy.py \
 --autobind-ip 1.2.3.4
red -v3 -p /etc/zorp/policy.py \
 --autobind-ip 1.2.3.4

The first field in each line is the name of the instance. This is user-definable, but
we need to refer to it verbatim in the Zorp configuration file proper, policy.py.
Speaking of which, you may use separate configuration files for each instance if
you wish, or you may configure multiple zones within a single file. Regardless,
the -p option in instances.conf tells Zorp which file to use for each instance.

The -v parameter sets log message verbosity: 3 is the medium setting, and 5 is
useful for debugging. This parameter controls only Zorp-generated log
messages and has no effect whatsoever on Netfilter/iptables logging. Finally,
each line ends with an --autobind-ip setting that determines to which dummy IP
Zorp should bind TPROXY when proxying connections. This IP address can and
should be shared between all instances. This address, obviously, should be the
one you set earlier (see Configuring a Dummy Interface, above).

 Configuring Zorp's Application Proxies: policy.py

Your iptables script determines how packets get routed to proxies, and /etc/
zorp/instances.conf determines how Zorp starts up. But to tell Zorp's proxies
how to behave, you need to set up /etc/zorp/policy.py, or whatever you called
the configuration file(s) referenced in instances.conf—policy.py is conventional
but not mandatory. This policy file contains two parts. The first part is a global
section in which zones are defined based on network addresses and allowed
services. The second part is a service-instance definition section in which each
instance listed in instances.conf is defined based on which services originate in
each and in which those services are mapped to application proxies.

Listing 6 shows a complete global section from our example policy.py. It begins
with some import sections, in which essential Python functions are included.
Next come our zone definitions. If you set up instances.conf to run one Zorp
instance per zone, your zone names here can be similar to or even the same as
your instance names. In Listing 6 I've chosen different names in order to
illustrate that technically, zone names are distinct from instance names.

Listing 6. policy.py, Part I (Global Settings)

from Zorp.Core import *
from Zorp.Plug import *
from Zorp.Http import *

InetZone("bluezone", "10.0.1.0/24",
 outbound_services=["blue_http", "blue_ssh"],

InetZone("purplezone", "192.168.1.0/24",
 inbound_services=["blue_http", "blue_ssh",
 "red_http"])

InetZone("redzone", "0.0.0.0/0",
 outbound_services=["red_http"],
 inbound_services=["*"])

InetZone("localzone", "127.0.0.0/8",
 inbound_services=["*"])

end global section

In each zone definition, you can see a network address that corresponds to
those in Figure 1 and specifications of which services are allowed. These service
names are user-definable and fleshed out in the subsequent service-instance
definitions. The important thing to understand about these statements is that
inbound and outbound is relative to the zone/network, not to the firewall.

Figure 2 shows what the internal-to-Internet HTTP data flow looks like as a
proxied connection. In this illustration, we see this data flow exists both as an
outbound connection out of the Internal (blue) zone and an inbound
connection to the Internet (red) zone. This is borne out in the respective
bluezone and redzone definitions in Listing 6. It's also important to use the
same service name in both zone definitions that a given data flow traverses
(blue_http in the case of Figure 2 and Listing 6).

Figure 2. An HTTP Transaction Outbound from Blue, Inbound to Red

The last point to make about Listing 6 is the * wild card signifies all defined
services. This is narrower than it might seem; * includes only those services
defined in policy.py's service-instance definitions, not all possible services.
Remember, Zorp processes only those packets that Netfilter and TPROXY send
to it. If a given zone is to allow no outbound or inbound services, the
inbound_services or outbound_services parameter may be either omitted or
set to [] (empty brackets).

Listing 7 shows our policy.py file's service-instance definitions. The first line of
each definition must reference an instance name specified in instances.conf,
and the following lines in the definition must be indented because these rules
are processed by Python, which is precise about indentation. The definition
can't be empty: if no services originate in a given instance, the token pass may
be used, as with the purple() instance definition in Listing 7.

Listing 7. policy.py, Part II (Instance Definitions)

def blue():
 Service("blue_http", HttpProxy,
 router=TransparentRouter())
 Service("blue_ssh", PlugProxy,
 router=TransparentRouter())
 Listener(SockAddrInet('10.0.1.254', 50080),
 "blue_http")
 Listener(SockAddrInet('10.0.1.254', 50022),
 "blue_ssh")

def purple():
 pass

def red():
 Service("red_http", HttpProxy,
router=DirectedRouter(SockAddrInet('192.168.1.242', 80),
forge_addr=TRUE))
 Listener(SockAddrInet('169.254.1.254', 50080),
 "red_http")

Otherwise, the definition should consist of one or more Service lines, specifying
a service name referenced in one or more zone definitions, and a Zorp proxy
module, either a built-in proxy included in the global import statements or
defined in a custom class. The last field in a Service line is a router, which
specifies where proxied packets should be sent. You can see in Listing 7 that for
the red_http service, we've used the forge_addr=TRUE option to pass the
source IPs of Web clients intact from the Internet to our Web server. Without
this option, all Web traffic hitting the DMZ appears to originate from the firewall
itself.

Although in Listing 7 we're using only the HttpProxy and the PlugProxy (a
general-service UDP and TCP proxy that copies application data verbatim), Zorp
GPL also has proxies for FTP, whois, SSL, telnet and finger. As I mentioned
before, you also can create custom classes to alter or augment these proxies.
It's easy to create, for example, an HTTP proxy that performs URL filtering or an
SSL proxy stacked on an HTTP proxy so HTTPS traffic can be proxied
intelligently. Unfortunately, these are advanced topics I can't cover here;
fortunately, all of Zorp's Python proxy modules are heavily commented.

The TransparentRouter referenced in Listing 7 simply proxies the packets to the
destination IP and port specified by the client. But in the red instance's red_http
service, we see that a DirectedRouter, which requires a mandatory destination
IP and port, may be specified instead.

Each Service line in a service-instance definition must have a corresponding
Listener line. This line tells Zorp to which local (firewall) IP address and port the
service should be bound. It may seem counterintuitive that the ports specified
in Listing 7's Listener statements are high ports: 50080 instead of 80 and 50022
instead of 22. But remember, each proxy receives its packets from the kernel
through Netfilter, not directly from clients. Accordingly, these high ports must
correspond to those specified in your tproxy table Netfilter rules (Listing 1).

I mentioned that unlike HttpProxy, which is a fully application-aware proxy that
enforces all relevant Internet RFCs for proper HTTP behavior, PlugProxy is a
general-service proxy (GSP). Using PlugProxy still gives better protection than
does packet filtering on its own, because the very act of proxying, even without

application intelligence, insulates your systems from low-level attacks that
Netfilter may not catch on its own.

 Conclusion

And with that, we've scratched the dense surface of Zorp GPL. This is by far the
most complex tool I've covered in these pages, but I think you'll find Zorp to be
well worth the time you invest in learning how to use it.

Resources

The English-language home for Balabit, creators of Zorp: www.balabit.com.

The root download directory for ZorpOS contains some tools that make using
Zorp GPL much easier, including iptables-utils, a TPROXY-enabled Linux kernel
and iptables command. In fact, these are the free parts of the Debian
distribution included with Zorp Pro, which is why everything in ZorpOS is in the
form of Debian packages. If you aren't a Debian user, everything you want is in
the subdirectories of pool; at the top of each package's subdirectory are tar.gz
files containing source code. If you are a Debian user, you can use the URL as
an apt-get source: www.balabit.com/downloads/zorp/zorp-os.

The Zorp Users' Mailing List is an amazingly quick and easy way to get help
using Zorp, whether Pro or GPL. This URL is the site for subscribing to it or
browsing its archives. Note that Balabit is a Hungarian company and its
engineers (and some of the most helpful Zorp users) operate in the CET
(GMT+1) time zone: https://lists.balabit.hu/mailman/listinfo/zorp.

Mick Bauer, CISSP, is Linux Journal's security editor and an IS security
consultant in Minneapolis, Minnesota. He's the author of Building Secure
Servers With Linux (O'Reilly & Associates, 2002).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.balabit.com
http://www.balabit.com/downloads/zorp/zorp-os
https://lists.balabit.hu/mailman/listinfo/zorp
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux for Suits

Showtime

Doc Searls

Issue #120, April 2004

Can we fix tradeshows? Our veteran showman suggests some open-source
solutions.

Put together the badges I've worn at tradeshows, and you'd have enough to tile
a wall. I've played about every role possible at a show: panelist, attendee,
exhibitor, keynote speaker, organizer, booth builder, reporter and promoter.
And I've been at it since the Dawn of Disco.

What amazes me, after all these years, is how technologies have gone through
one revolution after another, while their tradeshows hardly have changed at all.
Take a time machine back to Comdex in 1984 and, aside from such wireless
graces as cell phones and Wi-Fi, it looks pretty much the same as the one we'll
see this fall. How come?

One reason is tradeshows are markets in the ancient and literal sense of the
word. They are the industrial equivalents of the tents and stalls that gathered at
crossroads and village plazas back when trade began, long before the birth of
currency and the study of economics. For the industrial categories we call
markets, tradeshows provide a literal marketplace where buyers, sellers and
experts can gather to meet, do business and advance agreements about what
makes their category worthwhile. For a few days every year the virtual market
becomes a real one.

Today the term market applies to every category and subcategory, even to
specialties within specialties. Some tradeshows broadly support whole
industrial pies, while others serve various slices. The largest tradeshow in the
world, CeBit in Germany, covers information technology and
telecommunications. I've never been to CeBit, but I have been to Comdex—its
domestic equivalent—a dozen times or more. Mostly, however, I attend niche

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

shows. In the last few years, in addition to Linux shows, I've attended and often
spoken at shows about identity management, open source, emerging
technologies, computing and communications platforms, Macintosh and Mac
OS X, Jabber, BSD, Apache, embedded technology, interactivity, new products
and technologies, computer product distribution, blogging, peer-to-peer,
activist politics, privacy and security, technology impact on people, customer
service, government technology and electronic commerce—to name the shows
I can remember attending without looking at old calendars.

Although the subjects of these conferences differed widely, and although they
variously were called conferences, conventions, shows, events, expos,
workshops and -cons of various sorts, they generally held to long-established
tradeshow conventions. Let's look at those conventions:

First, tradeshows gather five types of people:

• Exhibitors, including employees staffing booths.
• Speakers, usually keynoters and panelists for breakout sessions.
• Attendees, who visit vendors and listen to speakers.
• Press and analysts, who report on vendors and speakers.
• PR people, who help transmit vendor information to press and analysts.

Shows make money from both exhibitors and attendees. Exhibitors spend
many thousands of dollars for booth space, and attendees spend either a small
sum to visit exhibitors or a larger sum to attend keynotes and breakout
sessions.

Some shows, such as Pop!Tech (www.poptech.org), don't include vendors.
Others, such as Demo (www.demo.com), showcase only vendors' new
products. But those shows are exceptions. On the whole, the system I
described above is pro forma.

Many tradeshow formalities are defaulted by their venues as well. Hotels and
convention centers exist in large measure to serve tradeshows. Doing that
requires highly formalized architectures and ritualized procedures. Flexible
meeting space, for example, is achieved by partitioning larger rooms into
smaller ones. Speakers are expected to stand behind podiums, and panelists sit
behind tables on stages at the fronts of rooms. Projectors are provided for
presentations or video enlargements of the speakers and panelists.

These architectural and procedural defaults make two assumptions:

1. What matters most is helping vendors sell stuff to customers.
2. In a similar way, knowledge flows top-down, from speakers to audiences.

http://www.poptech.org
http://www.demo.com

Yet, thanks to the Net, markets today are more connected than ever and less
hierarchical. (“Hyperlinks subvert hierarchy”, David Weinberger says.)
Customers, along with everybody else, are educating themselves and one
another, directly. More market participants are in positions to teach as well as
learn. Large corporate players are no longer the primary sources of wisdom
about the markets they lead. Every market's wisdom today is highly distributed
and able to distribute itself any way it pleases: e-mails, personal publications
on-line, wikis, IM, IRC and other forms of social computing, as well as through
ad hoc meetings in meat space.

So it's no surprise to hear that attrition now is a problem in the tradeshow
business and that the networked marketplace is a part of the problem.
Meetings & Conventions, in the January 2004 issue, says:

The instances of attendees circumventing traditional
registration to book through on-line third-party
providers has avalanched, leaving planners
increasingly frustrated and making attrition a major
issue for associations.

In 2004, a number of hotels will team up with planners
to fight the problem on a united front. “Hotel
companies traditionally have stayed on the sidelines
and said, 'We are protected by a contract. It's the
customer's problem,'” says Joel Pyser, vice president of
field sales for Bethesda, Maryland-based Marriott
International Inc. “Well, we can't afford to do that any
longer. No one enjoys presenting a customer with an
attrition bill. We have to partner with them to solve it.”

In this case, notice, the customer is the company that puts on the tradeshow,
not the hotel guest who attends the tradeshow. That individual is still a
consumer:

Web surfing for the lowest rate has become a
consumer sport. It also is a major thorn for planners
managing room blocks. The Alexandria, Virginia-based
International Society of Hospitality Consultants
estimates on-line bookings accounted for 30%–40% of
all reservations booked within a four-week arrival
window in 2003—up 20 percent over pre-9/11
numbers.

Of course, this top-down perspective will remain ingrained to the degree that
the bulk of income flows from large corporate customers. Still, it seems to me
that this whole industry could benefit from the same open-source value system
and development methods that caused the growth of Linux and the Net.

In that spirit, I'd like to share the best of what I've learned from the best of the
tradeshows I've attended over the last few years. Here goes:

• Hold collegial meetings, not sessions. Some of the best sessions at
conferences are the BoFs, or birds-of-a-feather sessions, held after hours.
O'Reilly does an excellent job of aspiring to this format, even in its
standard sessions.

• Insist on long Q&A periods after lectures, with many working
microphones to pass around the audience.

• Record all sessions and make them available on-line in open audio
formats. This also helps sell attendees on coming to the next conference.

• Use conversation-friendly venues. Pop!Tech is held in an old opera house
in downtown Camden, Maine. The feeling of the whole place is cozy and
comfortable, and somehow it helps make the audience more involved
with each talk.

• Try forbidding vendor pitches. The first BloggerCon wasn't a vendor
venue. It was held at Harvard, in lecture rooms. But vendor pitches still
were discouraged, and it helped open conversation to topics that
transcended market economics.

• Make the Web a living and permanent resource and document archive.
Here nobody beats O'Reilly's system, which includes the company's own
writers, as well as pointers to writing done by outsiders covering or
attending the event.

• Provide wireless Net connections. It was at Esther Dyson's PC Forum that I
first witnessed a complete power shift from stage to audience, thanks to
Net-connected Wi-Fi. That was three years ago. Since then many other
events have added Wi-Fi, but the practice is far from standard. It should
be.

• Start topical conversations in advance of the show. Jerry Michalski
pioneered this when he was involved in PC Forum, many years ago. Today
his retreats are meetings for a persistent community that stays in touch
by e-mail, wiki and other methods. Countless constructive new
conversations have been started and sustained by these off-conference
methods.

• Hold hack-a-thons. Your event's name doesn't need to end in hack for
hack-a-thons to work. ApacheCon launches itself with a hack-a-thon that's
not to be missed, even if you're not a hacker. It begins the event with a
sense that stuff can be done.

If you have any other ideas, send them here or to your friendly conference
planner. If we do this thing right, we might revolutionize another industry.

Doc Searls (info@linuxjournal.com) is senior editor of Linux Journal. His
monthly column is Linux for Suits and his biweekly newsletter is SuitWatch.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

EOF

SOLIS, a Brazilian Free Software Cooperative

Cesar Brod

Issue #120, April 2004

If a co-op business structure works for Sunkist and Land O'Lakes, it could work
for software too. After several successful university software development
projects, developers in Brazil are using an old business plan in a new way.

Univates, a university center in the south of Brazil, has been a free software
user since 1997 and has adopted free software as a standard for administrative
people since 1999. As there was no academic administration system available
as free software, Univates developed its own, SAGU. SAGU now is used by a
dozen other universities in Brazil, with some of them contributing code. By
adopting free software and developing SAGU, Univates has saved almost
$200,000 US in software licenses. It further saves $70,000 US every year as it
doesn't need to buy new licenses or upgrades when installing new computers
or increasing the user base. The number of students in Univates has grown
from a little less than 2,000 in 1999 to more than 7,500 in 2003. The savings
always have been more than enough to cover the payroll of the whole IT
department, now employing 26 people.

If you search Google with the keywords Free Software Brazil, you surely will find
Univates' projects among the first search results. These projects include a
library automation and integrated circulation system, GNUTECA, which is
compliant with international library standards. It has been promoted in South
America through workshops held by Unesco's office in Montevideo. There also
is a PHP-based, object-oriented development framework, MIOLO, that was used
to develop GNUTECA and is the base of several other projects. You also should
look at Agata Report, a full-featured professional database reporting tool; see
www.univates.br/freesoftware.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.univates.br/freesoftware

 Regional Development

Univates is a community-owned university. Its only financial support comes
from students' payments and some services it provides to the region's
industries. It serves a region made up of 40 cities where 300,000 people live. As
it is owned by the community, Univates also is audited by this community,
which participates in the election of the rector and in several committees that
help decide the university's actions. Univates is committed to regional
development and has promoted several programs through which it helps local
industry.

Univates has watched its IT department become self-sustainable and even
generate resources for the university by selling services such as software
customization and technology transfer seminars. However, as Univates never
wanted to be a software house, it proposed to its IT team that it become a
separate entity. As its own entity, it can be hired by Univates and by others,
expanding its business and creating job positions to be filled by the university's
graduates and students. Both this new entity and Univates would work on a
business plan that would link regional development and free software.

The International Co-operative Association (www.ica.coop) says that:

Co-ops are based on helping each other and caring for
others. A cooperative is a type of business or
organization. It is a group of people who are working
together to solve their own problems and meet their
needs. Co-ops are different from other types of
organizations since they abide by three main rules: 1)
co-ops treat people fairly and respectfully; 2) co-ops
encourage people to work together toward solving
their mutual problems; and 3) co-ops provide products
and services to meet people's needs rather than solely
for the purpose of making money.

By this definition, it is quite easy to see that a co-operative organization and the
free software philosophy have a lot in common. Both are concerned with
treating people with respect and working toward common objectives. The new
organization that was born from Univates' IT department is a cooperative called
SOLIS (www.solis.coop.br), officially inaugurated on May 12, 2003.

SOLIS works toward regional development by finding ways of empowering local
businesses through the use of free software. By doing this, people at SOLIS
hope these businesses can become more competitive, profitable and able to
grow and hire more people.

Right now SOLIS is working with industrial and commercial associations,
helping the companies associated with them fine-tune their needs in order to

http://www.ica.coop
http://www.solis.coop.br

save money by sharing among them the costs of software development,
customization and training. Univates and SOLIS wish to prove in a practical way
that free software can help regional development and is good business that—
most importantly—respects people's free access to knowledge. We hope other
universities can set up similar arrangements in their own regions.

Cesar Brod (cesar@brod.com.br) first became involved with the GNU/Linux
operating system in 1993. He now is the IT manager and coordinates software
development for Univates. Cesar also is the Vice President of SOLIS and the
coordinator of the international section of the Latin America Free Software
Conference (www.softwarelivre.pti.org.br), which will be in November 2004, in
the beautiful setting of the Iguassa Falls, among Paraguay, Argentina and Brazil.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:cesar@brod.com.br
http://www.softwarelivre.pti.org.br
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 From the Editor

Security One Step at a Time

Don Marti

Issue #120, April 2004

The attack path between intruders and your data might be shorter than you
think.

As I write this, yet another e-mail worm is spreading among non-Linux
computers and incidentally filling my mailbox with “YOU HAVE A VIRUS”
bounces from dumb software that somehow doesn't yet get the concept that
worms forge mail. There's nothing like a worm attack that spares Linux to bring
out the smug superiority in Linux users.

Cut it out. The attack path here is one step long. All that's keeping us safe is that
most programs for Linux don't make it easy to run attachments from incoming
mail. But combine the right vulnerability in a common desktop app with a little
social engineering, and you've got a Linux worm.

Last year, the not-so-dramatically-named CAN-2003-0434 vulnerability allowed
humble PDF files to run arbitrary commands as you. Linux users and
distributions dealt with it quickly enough that it didn't turn into a vector for
spreading a worm. With today's larger Linux user base and more desktop
standardization, the next vulnerability will be a bigger risk.

Now that we've scared you, we'll cover the tools you could use to prevent not
just a mail worm, but other attacks we don't know about yet. Run a local
firewall and don't let programs on your company's desktops reach outside
SMTP servers. Deploy exactly the firewall policy you want, on every host, with
the advanced iptables advice in Chris Lowth's Kernel Korner on page 24. As you
move your business apps to PHP, design them for security with Xavier Spriet's
battle-tested designs on page 54.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

And, make the next move in the spam wars. Deal with forgery where it starts.
Although the US has essentially legalized spam, all the ISP advertising we've
seen recently has used spam filtering as a selling point. Sender Permitted From,
which Meng Weng Wong covers on page 62, lets you pop up out of the weeds
and get mail through to customers who use strict spam filtering. SPF is a “look
at me, I'm legit” measure you can deploy in a few minutes for a simple mail
configuration.

Finally, in our cover story, Ibrahim Haddad and Miroslaw Zakrzewski explain a
promising example of how to apply the kernel's Linux Security Module (LSM)
interface to add process-level access control for telecom apps running on
clusters (page 68). Developers can carry out this level of work, free of
restrictions, because of the freedom that the GPL licensing consensus gives all
of us. Keep your systems secure and enjoy this month's issue.

Don Marti is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Readers sound off.

 KDE Baby

My baby daughter who is only 3.5 months old just loves Linux. After installing
SuSE on my new and shiny P4 and introducing her to Geeko the chameleon,
she is getting very interested. She especially likes KDE. I guess she is attracted
by the Fisher Price Toys-like look and feel of the Keramik theme. The photo
shows Idun showing her enthusiasm for KDE.

How many Linux users have children already Linux-enabled? Are babies
welcome at Linux Counter?

—
Janus Sandsgaard

 SMART and Disk Errors

In the January 2004 issue of Linux Journal, I came across the article on SMART
by Bruce Allen on page 74. I downloaded and installed it without a hitch. I ran it

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

with the -t (test) option and immediately afterward I encountered disk errors.
(Before I ran smartctl everything was fine.) I shut down and rebooted. The
system ran fsck because it encountered errors on the hard drive. I eventually
had to run fsck in manual mode and lost info.

—
Marshall Lake

Bruce Allen replies: I'm sorry to hear you've had disk problems. What's
happened in your case is unfortunate. You had a disk that already was
compromised before you examined the SMART data and ran self tests.
Probably some of the disk sectors were unreadable, but you didn't know it
because they were storing files that you normally don't access. When you ran a
disk self test using smartctl -t, this did a read-scan of the disk, and the disk
problems became apparent.

Before investing additional time in the system with this disk, make sure that the
disk does pass a long self test without errors and that the Current pending
sector and/or Offline pending sector raw counts are zero. If not, the disk needs
repair/replacement before you fix the OS problems.

If your OS distribution is RPM-based, I suggest that you use the verify options of
RPM to make a list of all missing or changed files on your system along with the
name of the package that they came from. Then, re-install the packages that
have missing or corrupted files.

The failure rate of new hardware (and particularly new disks) is higher than
when they are a few days or weeks old. New hardware is more likely to fail than
hardware that has worked for some time. The fact that fsck worked okay
means only that the filesystem is consistent. It does not read all the data from
the disk.

The smartctl -t command starts a self test that reads every byte on the
disk. This is a much more thorough test than fsck. I strongly advise you not to
trust the disk unless it runs a smartctl -t long test without revealing any
problems.

 Questions for Robert Love on I/O Scheduler

I just read your I/O scheduler article in the February 2004 Linux Journal. Great
article, but it left me with a few questions. Hopefully you can answer them for
me. How do the Deadline and Anticipatory I/O Schedulers detect when a
deadline has been met or passed? Are there multiple kernel threads, one or
more that are processing the main queue and one or more that are walking the

read/write queues checking deadlines? Wouldn't the Anticipatory algorithm
also give the possibility of causing starvation? If we assume a request comes in
and the deadline passes, the I/O scheduler will see that the deadline is passed
and process the request, then wait 6 milliseconds thinking there may be one or
more requests in the same area. If there are one or more requests in the same
area, then will it basically loop processing these close requests, waiting 6
milliseconds, processing more requests, etc.? The test outputs really show how
much better the I/O schedulers in 2.6 are than in 2.4 , but how much does the
process scheduler play into this—choosing the O(1) scheduler over the default
2.4 scheduler?

—
Torin Ford

Robert Love replies: Glad you liked the article. There are no threads involved.
The I/O scheduler code is handled in two places: in the interrupt handler for the
disk's driver and in the process context code of the process submitting the
request. The code can detect a deadline easily, because the deadline-sorted
lists are inherently FIFO. The request at the head of the list has the oldest
expiration, so the list need not be walked—just peek at the head of the FIFO list.

In reply to the question about whether the anticipatory algorithm will also lead
to starvation, eventually another request will expire, and it will go service it. The
anticipation heuristic is just used to decide where to seek to, it otherwise does
not change the algorithm of the disk.

I don't think the better process scheduler comes into play whatsoever. We
know why the times are better: the writes-starving-reads phenomenon, so the
better numbers are readily explainable.

 English Lesson

The February 2004 issue of Linux Journal once again has the awful phrase
“comprised of” (on page 56). Can I ask you to grep through incoming
manuscripts to catch this annoying solecism in the future?

—
A. T. Young

It'll be in our stylebook from now on. —Ed.

 Flaky Entertainment System

I was on a Virgin plane in December 2003 with such a faulty system that
something like 90% of us mostly saw the reboot console! Luckily, it was a night
flight, otherwise the kids would have gone crazy, and there was no mention of
Linux on the screen, so most people would not have associated it with our
beloved OS! However, it also shows that we need to release only well-tested
stuff to real customers, a lesson we need to learn if Linux is to move into the
home environment.

—
Kirk Martinez
University of Southampton

 Compatibility List?

Recently I went looking for a Linux compatability list on the Web and I was
unable to locate one. Does LJ know where one is located?

—
Walt L. Williams

Every major Linux distribution maintains a hardware compatibility list. Not all
distributions include the same hardware support, so you need to check yours.
If you want to know whether there's a driver available in source code form that
you can compile and configure, you usually can do best by searching for the
hardware name +linux on Google. —Ed.

 Table Fix for Work-Flow Article

I noticed a mistake in the February 2004 issue of LJ in the article by myself and
Luciano Barone about REDACLE. In the text there is a reference to Table 2 that
is missing. Table 2 should, in fact, read as follows:

Only the first row is relevant for text comprehension. Tables actually marked as
2 through 6 should be renamed 3 to 7.

—

ID Name Subname Type

195 crystal Barrel 1L

36 capsule Barrel C1

35 apd Barrel

Giovanni Organtini

 Photo of the Month

Here are a couple of photos of our last vacation. We went to Roswell, New
Mexico to find out if the aliens were using Linux. Most were Debian supporters.
There is a before and after photo. Some help from The GIMP was required.

—
Tom and Orion Maier

Photo of the month gets you a one-year subscription. Send to
info@linuxjournal.com. —Ed.

 Lindows: Good install, but Support Needs Work

After reading Steve Hastings' review of Lindows 4.0 [LJ, December 2003], I had a
few comments of my own to add. First, concerning the Click-n-Run warehouse, I
had many of the same complaints as Steve. Along with the rebranding of many
packages and the inability to get packages to work properly, there is a serious
problem with software versions being behind the curve. For instance, their
OpenOffice.org version is 1.0.3, whereas the current OpenOffice.org is 1.1.x.
Evolution in the warehouse is on version 1.2, while Ximian is on version 1.4.
There are many examples of this.

mailto:info@linuxjournal.com

Another serious problem is in the area of customer support. I sent a report to
Lindows tech support in late December 2003 about these issues and have yet
to receive anything other than an automated response (“We'll reply to this issue
in a few days”). Since that initial report, I've sent two follow-ups, and those have
gone unanswered as well.

Having said all that, I will agree that Lindows is very simple to install. I tried both
4.0 and the new 4.5 version, and they install in less than 15 minutes. There
were problems with the video card (an ATI All-in-Wonder) and the media-card
reader, but I have less problems with getting Lindows to work with the
hardware than I did with Mandrake, Red Hat and that other company from
Redmond.

But, until they have current version applications available in the Click-n-Run
warehouse and until they resolve the issues with customer support, I won't be
recommending Lindows to anyone.

—
Ed Dulaney

 Big News at Linux Vendors?

The Linux magazines have been conspicuously quiet about two of the biggest
Linux stories of 2003. The first is Red Hat rolling their Linux into Fedora Core
and dropping support of their older versions. The second is Novell buying SuSE
and Ximian. Red Hat is putting a positive spin on their story, while many others
believe it's a blunder on Red Hat's part and a betrayal of their customers.
Novell, is now a major Linux player. Does it all of a sudden have Linux religion?
Will they contribute to Linux's evolution? Or is Linux just the latest strategy/
weapon in their age-old war with Microsoft? Both these stories have a big
impact on the Linux community, and they are getting a lot of coverage and
discussion on-line. I would expect LJ to join in on the same. Will this happen
soon?

—
Henry E. Alubowicz

See the next letter for why these stories might be less important than you
think. —Ed.

 LJ Discovers IT's “Dark Matter”

Just wanted to commend Doc on a great piece (“DIY-IT...” [LJ, February 2004])
and LJ for being a brave enough to print it, despite its vendor-specific (read:
advertiser) implications.

Doc is on to the scoop of his journalistic career with his series on how open
source (and LAMP in particular) is taking over the enterprise and putting
customers back in control. The game is no longer about getting spoon-fed
solutions that take too long to implement, cost too much money and fail to
address the specific needs of any given business. It's time to say good-bye to
cookie-cutter enterprise software and Doc knows it.

What is more, another reason why he is on to something big is because the
open-source way, and the LAMP platform in particular, make developers more
productive. Vendors know it, developers who have used the tools know it, and
even those that haven't are beginning to suspect it.

In my day-to-day, I deal with friends and colleagues (as well as my own staff)
whose employers everyone would recognize as being pillars of the Internet
economy. These folks depend daily on the huge productivity improvements
that come from open development tools and the passionate communities
willing to stand behind them. However, most of them either won't, or can't for
various corporate reasons, climb the nearest tree and scream to the world
about it.

Like dark matter that can't be seen but whose presence is felt everywhere, all of
these folks “in the know” are rebuilding the very infrastructure on which IT
depends, one brick at a time. And, in perhaps what is just as important, they
are also rebuilding all of the starting assumptions behind what “enterprise
software” is all about. So thanks Doc and LJ. Keep on it—you're on to something
big.

—
Antonio Rodriguez
VP Engineering

 Errata

In the article “DIY-IT: How Linux and Open Source Are Bringing Do-It-Yourself to
Information Technology” [LJ, February 2004], Craig McLane, VP of Technology at
Ticketmaster, was mistakenly identified as the source of quotations that were in
fact made by Sean Moriarty, EVP of Products and Technology at Ticketmaster.
The article also said the event where the talk took place was LinuxWorld Expo.
In fact, both men spoke at the O'Reilly Open Source Convention. —Doc Searls

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UpFront

• diff -u: What's New in Kernel Development
• APG and TkAPG:
• convertfs:
• Filelight:
• Hex Puzzle 22:
• LJ Index—April 2004
• JS Calendar:
• liamtog:
• The Godfather of SOLIS
• rsnapshot:
• They Said It
• User-Mode Linux:

diff -u: What's New in Kernel Development

Zack Brown

Issue #120, April 2004

The 2.6.0 kernel has come out, roughly on schedule. The arrival of a stable
series at a predicted time is a first in Linux development, and it's none too
common in the rest of open-source development either. Although most people
tend to accept Linus Torvalds' discovery that encouraging help from arbitrary
developers actually does result in better code and faster development, the
secret of predictable release cycles has remained elusive.

In the case of the 2.6.0 release, Linus did insist on maintaining feature freezes
and other policies without going back on them, but this itself could work only if
the various features were made to coalesce at roughly the same time. Clearly,
no simple method has emerged yet. In terms of maintainership of the 2.6 tree,
this job apparently has gone to Andrew Morton, in much the same way that the
2.4 tree went to Marcelo Tosatti and the 2.2 tree went to Alan Cox. Actually,
even now it is unclear who is the true maintainer of the 2.6 tree. Andrew
certainly appears to be making decisions with authority, but Linus is the one

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

who puts out actual releases. Perhaps Linus and Andrew will continue in tight
collaboration until the 2.7 fork, but for now the overall maintainership situation
is much less clear than it was for any of the previous stable series. It will be
interesting to see how these issues play out in the 2.7–2.8 time frame.

Last month I said XFS might not make it into the 2.4 tree due to Marcelo
Tosatti's plans for a deep freeze following the emergence of the 2.6 series. In
fact, XFS did make it into 2.4 before the final cutoff. This was partly due to a
large developer outcry, in which it was pointed out that XFS was the last major
journaled filesystem missing from 2.4. In addition, Marcelo himself previously
had indicated that XFS would go into his tree when it was ready. In the end,
Marcelo did insist on a thorough analysis of the code by a third party before
allowing it into 2.4. Ultimately, however, XFS made the cut, and further XFS
work is going into 2.4 to round off the feature in spite of the deep freeze.
Undoubtedly, this will taper off quickly.

Ian Kent has (for the moment at least) accepted the role of DevFS maintainer.
This is a sharp reversal of the previous trend, which was to let DevFS die a quiet
death and replace it with a similar feature, such as udev. In fact, Greg Kroah-

Hartman has been making regular udev releases, with an eye toward exactly
this possibility. However, in spite of DevFS' flaws, including some that are
apparently so severe as to be virtually unfixable, DevFS still provides features
that no other system has yet been able to surpass. Folks like Ian have begun to
advocate keeping DevFS in the kernel and fixing whatever problems it may
have, however difficult they may turn out to be. Ian, for as long as he lasts, has
decided to accept the challenge. It will be interesting to see how the other
kernel developers, notably Alexander Viro (a particularly vehement DevFS-
hater), take to this unexpected turn of events.

Yasunori Goto has been working on some code to allow RAM hot plugging. So
far he's been targeting NUMA machines, but high on his to-do list is a port to
IA-64 and IA-32 machines. Although interesting for desktop users, this feature
could be quite a boon to server administrators, who often are blamed for
downtime on company systems. It also brings us closer to truly stackable
systems. Imagine a wearable computer that gains two additional processors
when you put on your shoes. Yasunori may not be thinking quite along those
lines, but the prospect of hot-plugging RAM chips is enticing.

APG and TkAPG: www.adel.nursat.kz

David A. Bandel

Issue #120, April 2004

http://www.adel.nursat.kz

Using APG, you can get barely pronounceable passwords or totally random
passwords. It has a server-client mode so you can request passwords over the
network or generate them locally. An optional Tcl/Tk client makes it easy for
anyone to use. APG is flexible and also includes a PHP application for your Web
server to generate random passwords. Requires: libm, libcrypt, glibc and
optionally Tcl/Tk.

convertfs: tzukanov.narod.ru/convertfs/index.html

David A. Bandel

Issue #120, April 2004

Need to convert from ext2 to something like ReiserFS or XFS? With convertfs,
you can do it on the fly on any unmounted filesystem or on one you can
unmount from a running system. Don't try this at home—or anywhere else for
that matter—without a backup. However, I successfully converted several ext3
filesystems to XFS. The included bash script even reminds you to change your /
etc/fstab entry for that partition. Requires: glibc and kernel with loop device
support.

http://tzukanov.narod.ru/convertfs/index.html

Filelight: methylblue.com/filelight

David A. Bandel

Issue #120, April 2004

Filelight is a graphical version of the disk usage utility du. It shows you disk
usage as a colored wheel. You can see the overall usage in the center of the
circle, then various directories and subdirectories branching out. Moving your
cursor over any area provides more detail on that area and subordinate areas.
See at a glance where your disk space went. Requires: libkio, libkdesu, libutil,
libfam, libkdeui, libkdecore, libDCOP, libresolv, libart_lgpl_2, libkdefx, libqt-mt,
libaudio, libXt, libXmu, libXrender, libXcursor, libXft, libfreetype, libfontconfig,
libdl, libpng12, libz, libXext, libX11, libSM, libICE, libpthread, libstdc++, libm,
libgcc_s, glibc, libGL and libexpat.

Hex Puzzle 22: ibiblio.org/pub/Linux/games

David A. Bandel

Issue #120, April 2004

Here's a tough one for all you puzzle fans. Simply fit the various-shaped pieces
into the puzzle. Frustrate your friends, family and the shop know-it-all. It's a lot

http://methylblue.com/filelight
https://secure2.linuxjournal.com/ljarchive/LJ/120/7340filef1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7340filef1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7340filef1.large.jpg
ftp://ibiblio.org/pub/Linux/games

harder than it looks, but if you can solve a Rubik's Cube, this should be easy.
Requires: Tcl/Tk and wish.

LJ Index—April 2004

• 1. Starting price in dollars for a Linux PC by CPUBuilders at Sam's Club:
256.68

• 2. Starting price in dollars for a Linux PC by Microtel at Wal-Mart: 199.98
• 3. Price in dollars for a loaded 2.66GHz Linux-Certified Debian Linux

Laptop: 1,749
• 4. Billions in dollars Japan is spending to fund Linux developers in Japan:

8.3
• 5. Number of local companies in Taiwan involved in open-source software

development: 20
• 6. Current production value, in millions of dollars, of open-source

software developed in Taiwan: 3.4
• 7. Millions of dollars Taiwan government will put into promotion of open-

source software development: 3.4
• 8. Percentage of servers in Taiwan currently running open-source

software: 10

https://secure2.linuxjournal.com/ljarchive/LJ/120/7340hexf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7340hexf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7340hexf1.large.jpg

• 9. Goal percentage for servers in Taiwan running open-source software by
2007: 30

• 10. Percentage of personal computers in Taiwan currently running open-
source software: 0.2

• 11. Goal percentage for personal computers in Taiwan running open-
source software: 5

• 12. Stock value in billions of dollars paid by Sun Microsystems for Cobalt
Networks in 2000: 2

• 13. Number of Cobalt products Sun continues to make after February 19,
2004: 0

• 14. Millions of copies of the Linux-based Sun Java Desktop System
projected for installation in China: 200

• 15. Minimum starting install rate per year for Sun Java Desktop Systems,
beginning January 2004, in thousands: 500

• 16. Maximum starting install rate per year in millions for Sun Java Desktop
Systems, beginning January 2004: 1

• 17. Sun's goal number in millions of Linux PCs in China: 500
• 18. Range of percentage of cost reductions made possible by migrating

from Microsoft Office to OpenOffice.org: 60–70
• 19. Thousands of citizens per week using 72 open-source telecenters in

Sao Paulo: 150

• 1: Sam's Club
• 2: www.walmart.com
• 3: Linux Certified
• 4: itbusiness.ca

• 5–11: Asia Computer Weekly

• 12, 13: CXO Today

• 14–16: Motley Fool
• 17: John Fowler of Sun, at Apachecon
• 18: John Terpstra
• 19: Nat Friedman

JS Calendar: dynarch.com/mishoo/calendar.epl

David A. Bandel

Issue #120, April 2004

If you are designing or writing a Web page that requires date inputs, this tool
handles the task nicely. The author shows you exactly what code to use to have

http://www.walmart.com
http://itbusiness.ca
http://dynarch.com/mishoo/calendar.epl

the calendar appear as a pop-up or flat calendar (one that's static on the Web
page), how to script different date formats for form inputs and more. Ensuring
that date inputs in forms are correct has never been easier. Requires: browser
capable of running JavaScript.

liamtog: www.liamtog.org

Ian Kluft

Issue #120, April 2004

liamtog is a spambot-poisoning system, whose name is “got mail” spelled
backwards. It creates an endless self-referencing web of links that include
bogus mail addresses so spammers' Web crawlers harvest a bunch of bad data
for their lists when they scan your site. That much has been done by spambot-
poisoning scripts for more than three years.

I wanted some things in a spambot poisoner that I didn't find in the ones
available, so I wrote my own. liamtog supports spam traps, allowing you to
configure a small number of the bogus e-mail addresses to be in a domain or
subdomain you designate as a spam-trap domain. This can be used for
capturing spams to updating your filters automatically. You can control such

https://secure2.linuxjournal.com/ljarchive/LJ/120/7340jscalf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7340jscalf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7340jscalf1.large.jpg
http://www.liamtog.org

things as the length of the page it generates, how often it pauses during the
output to slow down the spambot's progress and what mix of words, links and
mail addresses it should have. And, you can configure it differently for various
virtual Web servers on the same server. Requires: Perl 5, cgi.pm and Apache
httpd 1.3 or 2.0. mod_perl is optional but recommended.

The Godfather of SOLIS

Cesar Brod

Issue #120, April 2004

Jon “maddog” Hall and Cesar Brod first met in 1999. In 2001, he visited
Univates, where he actually suggested the team should think of spreading what
they were doing to other universities. He is considered to be the Godfather of
SOLIS. See page 96 of this issue for more information about SOLIS, the Brazilian
Free Software Cooperative.

rsnapshot: www.rsnapshot.org

David A. Bandel

Issue #120, April 2004

I've seen several local/remote backup packages, but this probably is one of the
simplest to set up and use. It also makes use of hard links for storage, so the
same file isn't stored twice but hard linked, which saves a lot of disk space.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7340maddogf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7340maddogf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7340maddogf1.large.jpg
http://www.rsnapshot.org

Backups can be made as often as you like, and remote backups use SSH.
Requires: Perl, rsync and SSH (optional).

They Said It

First, our chairman has challenged the IT organization, and indeed all of IBM, to
move to a Linux-based desktop before the end of 2005. This means replacing
productivity, Web access and viewing tools with open standards-based
equivalents.

—Bob Greenberg, CIO, IBM (www.theinquirer.net/?article=13485)

Standards have nothing to do with innovation; a good standard is what
happens when an industry basically has shaken the bugs out of a technology
and then, after the fact, writes it down. This is true of all the really successful
standards: grams and meters, voltage, the calendar, octane ratings, TCP/IP,
XML.

—Tim Bray (www.tbray.org/ongoing/When/200x/2003/05/10/RSS-std)

Most art forms are produced “live” in the same way at some point, aren't they?
If art patrons came to pay for the performance, and being involved in the
performance, rather than for the artifact itself as if it was a bar of gold, then
P2P wouldn't be the threat it's characterized as.

This is already what's happening with software and open source—being
successful is less about hiding yourself away and creating the perfect code, and
more about participating in the community process by which a body of
communal code is written.

—Brian Behlendorf (from an e-mail)

The world rewards action. It doesn't reward much of anything else.

—Scott Adams, (paulboutin.weblogger.com/2003/12/22)

User-Mode Linux: user-mode-linux.sourceforge.net

David A. Bandel

Issue #120, April 2004

Definitely not for the faint of heart or for RAM/CPU-challenged systems. User-
Mode Linux (UML) allows you to build running Linux systems within Linux

http://www.theinquirer.net/?article=13485
http://www.tbray.org/ongoing/When/200x/2003/05/10/RSS-std
http://paulboutin.weblogger.com/2003/12/22
http://user-mode-linux.sourceforge.net

systems for use as sandboxes or virtual servers. It's a poor man's way to
emulate a mainframe running Linux instances. You can bang on your sandbox
all day without affecting your host. Perfect for setting up lab rats, honeypots or
verifying that the latest updates won't hose your other systems. If you made a
copy of the file beforehand, going back is all too simple. It's also great for
hosting providers to give clients their own servers without the additional
hardware costs. Requires: running Linux system with X (preferably with the
optional skas3 patch) and a uml-patched Linux kernel.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7340userf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7340userf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7340userf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 From the Publisher

Ten Years of Linux Journal

Phil Hughes

Issue #120, April 2004

They said he was crazy when he asked about device driver support. But look at
Linux now.

With this issue, Linux Journal turns ten. I hadn't really thought about how LJ had
been my job for ten years until Don suggested I write this editorial. To me,
that's a good thing; I have been publishing rather than counting days. What has
happened in these last ten years is amazing. Ten years ago I don't think anyone
would have expected to see the L-word in ads by HP, IBM, Oracle and many
other big players.

In looking around to see what I had from ten years ago that might have
something to do with this editorial, I found two interesting things. The first was
my copy of Yggdrasil LGX: Linux/GNU/X. This is the Fall 1993 distribution. The
second was a picture of Phaedra, the daughter of Joanne Wagner, our first ad
rep. The two go together because Phaedra (now 15) used to play the text game
Mille Bornes, from the BSD games collection, on this version of Linux.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/120/7308f1.large.jpg

Who came up with the name?

https://secure2.linuxjournal.com/ljarchive/LJ/120/7308f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7308f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7308f2.large.jpg

Is she still a Linux gamer?

The distribution came in the form of a 64-page book and had a description of
what it included and what it would run on on the covers. Inside you found a CD,
a regular 5 1/4" boot floppy and one of those new-fangled 3.5" boot floppies.
The system requirements were 4MB of RAM and from 2 to 680MB of disk
space. Inside the book were installation information and a list of where to get
support—12 places. One of these 12 is Russ Nelson at Crynwr Software, who
still is very much an active member of what we were all calling the free software
community back then.

We publish a magazine, so let me look at what I predicted back in the
beginning. My editorial in issue two was a piece of fiction describing what Linux
would be like in the year 2000—six years into the future. The first sentence
says, “In the past 7 years we have seen Linux go from an idea for a small UNIX-
like system into a movement to bring affordable, reliable multi-tasking software
to anyone who could buy a rather minimal computer.” I don't think there is any
argument there.

After some rambling about a program loader called MS-DOS, I went on to say,
“With the advent of ISDN in the early 1990s and personal satellite stations in
the late 1990s, connectivity became the big issue.” Personal satellite certainly
did happen. I was wrong about ISDN (I guess I forgot it stands for It Still Does
Nothing), but DSL and cable clearly filled that gap. So, I am still on track.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7308f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7308f2.large.jpg

And that's where the track went astray. For example, I predicted that 90% of LJ
subscribers would be receiving the magazine on-line. It still sounds like a great
goal, but a combination of people wanting to have something to carry on the
bus with them and the way subscription audits work—that is, only paper
magazines count toward the official circulation—has slowed progress there. Of
course, to my credit, Microsoft founder Bill Gates previously had predicted that
Xenix on an Intel 80286 chip was the future of computing, so at least I was a
little closer.

All my other predictions had to do with getting everyone on the Internet. In
January 2001, I moved to Costa Rica. In the 1994 editorial I claimed that in 2000,
I was in Yaak, Montana. So, I did move but I picked a place with a lot better
weather. This move also helped me adjust my perspective about Internet
connectivity. While many countries, Korea being a good example, are delivering
broadband Internet service to a large percentage of their population, many
other places are still without.

About nine years ago we decided we needed a Web presence. Linux and
Apache sounded like the right approach, so we set up a 486DX100 with 16MB
of RAM to test the waters. We agreed to evaluate what we really wanted to do
when we got to 10,000 hits per month. LJ was growing and we were busy with
other projects. When we finally looked at the Web site again we were at
100,000 hits per month. The system was handling it just fine. Today, we receive
over 10,000 hits per hour on our Web sites.

Early on in the life of Linux, ISPs considered it to be an alternative to proprietary
UNIX platforms. This was an era where dial-up was almost always the answer.
Unfortunately, no intelligent serial communications boards were available with
Linux drivers. I started talking to vendors and they all thought I was crazy to
think there was any commercial future in Linux for them.

One company kept talking to me, though. They thought I was crazy mind you,
but they did keep talking. That company was Cyclades, and I finally managed to
get them to give Randy Bentson one of their boards so he could write a Linux
driver. Six months later, Doris Li, their marketing manager, admitted that 50%
of their domestic sales of that board were going to Linux users. Much like Russ
Nelson, Cyclades is still here.

 What We Did Right (and Wrong)

When Irene Pasternack and I started SSC about 20 years ago, we knew we
would be doing computer-related documentation and training, but we needed
to focus better than that. After discussing this, we decided the important thing

that would make us different from everyone else was we would create only
products we wanted for ourselves.

We weren't perfect, and every now and then we would get a brilliant idea and
forget to check it against this criteria. For example, we did three MS-DOS
Reference Cards. Bottom line: we sold about 5,000 of them, while we sold more
like 500,000 vi Reference Cards.

Starting LJ was one of those things we wanted for ourselves. We had been
running UNIX, but it looked like Linux was what we needed. We started the
magazine and made the switch pretty much at the same time and have never
looked back. We still do layout using Quark XPress on a non-Linux system, but
Scribus is looking pretty good now, so we could be an all-Linux shop in the near
future.

Once we started doing LJ, things have fallen into place a lot better than ever
before. Here are a few of those magic happenings:

• I knew Doc Searls' wife before they were married, in fact, before he knew
her. Doc became part of LJ because Joyce convinced him that I seemed to
be on to something.

• Right after Doc wrote the Cluetrain Manifesto, he got e-mail from Dawn
Smith. She told him she really liked the book and if he was ever in Costa
Rica....He wrote back telling her that his publisher at LJ had just been to
Costa Rica. Dawn told him that her husband recently had been working
with Linux. Today, Willy Smith, Dawn's husband, works for us.

• Back when I was starting SSC I worked for a company that did point-of-
sale systems for gas stations. That's where I met Dan Wilder, who has
been our head geek for the last few years.

I could go on and on here, but the important point I am trying to make is that
with LJ, connections have just happened. Or, more accurately, when we let
things happen in the Linux racket we seem to get the desired results.

 Building a Community

Linux made me believe in community. I have worked in computers since 1968
and had a few other technical jobs when I was going to college. They were just
that, jobs. I worked for a company that produced something it wanted to sell.
You always had “the company” and “the customer”. With Linux, that paradigm
changed.

At first there was no company. The latest Linux distribution was a box of home-
brew floppies that were passed around at the Seattle Linux Users' Group

meetings. We knew Linux was growing fast when we had two sets to loan out. I
remember sending e-mail to Ted Ts'o about a problem I was having with the
serial driver. I was somewhat timid, but his response included a new driver to
test. It fixed the bug, and I realized that Linux was moving forward because we
worked together.

The first time I met Linus Torvalds I saw what was behind that whole sense of
community. It was at a party in Washington, DC. When Michael K. Johnson and I
arrived, Linus was there along with a few other people who had contributed
code to Linux. They were in a technical discussion about how something new
should be implemented. What I saw was Linus treating these people as peers
rather than trying to be the boss. To me, Linus is the ultimate manager. I mean,
who else has been able to get thousands of employees, many of whom he has
never even met, to work for free?

With Linux and Linux Journal, that community continued. We have authors who
write because they want to write, readers who tell us that our ads are very
useful to them and advertisers who ask us what we think our readers want to
see. Sure, there is money changing hands (I haven't yet figured out how to get
my staff to work for free), but much of that money is recycled within the Linux
community.

 World Domination

Linus coined the idea of World Domination after we had started Linux Journal.
At first it sounded like a joke, but today, it sounds like a goal we will reach
before LJ turns 20. But, again, looking at the world scene we see a much
different picture than if we solely focus on the United States.

Initially, I thought it was a third-world issue that drove Linux penetration. That
is, people here don't have the same amount of disposable income as those in
the US, and therefore, they are more willing to listen to a solution than follow
the marketing hype. But, Linux penetration in Europe is very significant; the
same is true in Asia. Although I don't understand why, I think the United States
will be the last country to take Linux seriously.

There are two ways we can move Linux forward in the marketplace. One is to
continue to show the shortcomings of proprietary alternatives. The problem
with this approach is you get into a “which is better” contest, and the people on
the anti-Linux side have a lot more money than we do. Thus, it isn't an issue of
being right but of getting everyone else to see you are right.

The other method is to just do it. That is, run Linux. Help others run Linux.
When a business needs a solution, offer Linux. And, most important of all,

when Linux doesn't do something that is needed, address it. We have an
amazing base available and some amazing talent in the Linux community. It is
time to run with what we have and reach that World Domination goal.

 What's Next?

First, I have some questions that need answers. Actually, we probably will never
get the answers, but I find them interesting to think about:

• At what point did Microsoft spend more on bad-mouthing Linux than all
Linux vendors combined spend on marketing?

• When will the number of installed copies of Linux exceed the number of
legally installed copies of Microsoft OSes?

• When will the number of installed copies of Linux exceed the number of
total installed copies of Microsoft OSes?

Notice that I say when, not if. This will happen. It may happen last in the United
States, but the combination of Linux maturing and the world economy dictates
that this will happen. All of us have an opportunity to make this happen faster.

By the time you read this, I probably will be in Nicaragua helping get some
Linux classes started. These are not classes for systems administrators or even
computer users. The average person will have never used a computer before
and currently makes about $3/day working in a cigar factory. This is not the
profile of people that Microsoft is interested in marketing to, but they are
typical future new computer users. This is my current path; you don't have to
pick this same path. You simply can use Linux and set an example.

Another good approach is to help someone convert to Linux. For example, my
neighbor does computer consulting. All his customers run Microsoft software,
but they are getting pretty irritated by worms and viruses. Most of them run
typical office software, including word processor, spreadsheet and e-mail, so it
is the perfect time to offer them an alternative.

Although Linux certainly has become mainstream, it still has a great distance to
go before we can claim a World Domination success story. If you are a Linux
Journal reader, you are likely ahead of the crowd. Put a little effort into getting
that crowd moving in the right direction, and we can reach World Domination
long before Linux Journal is 20.

Looking beyond Linux, we also need to look at how what has happened with
Linux is a template for what can happen in other areas. In mid-2003, we started
our WorldWatch site as an experiment (worldwatch.linuxgazette.com). We saw
the need for a worldview of what was happening with Linux and open-source

http://worldwatch.linuxgazette.com

software from a social, political and economic point of view. What happened
made WorldWatch Editor Willy Smith realize that we needed to tie together
free, libre and open-source software (FLOSS) with similar efforts in other areas.
One of the best examples is what we called Open Source seeds. That is, seeds
that actually can reproduce rather than the genetically engineered ones that
have to be purchased from the patent holder.

This revelation resulted in our creation of a new Web site, A42 (www.a42.com).
The Linux-related technical side of what WorldWatch was will be appearing on
Linux Gazette (www.linuxgazette.com). A42 is going to be where we try to tie
together the whole open-source revolution—whether it applies to computers
or not. In order to remain sane, A42 will take a light-hearted approach.

So, let's just say Linux moving toward World Domination is well on the way, and
I feel comfortable enough it will happen that I am going to go further out on a
limb this time and say that Open Everything is the real goal. Hasta pronto.

Phil Hughes is publisher of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.a42.com
http://www.linuxgazette.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

On the Web

Power to the People

Heather Mead

Issue #120, April 2004

Open-source philosophy, not to mention technology, is infiltrating more and
more aspects of our daily lives.

Back in November 2003, Doc Searls posted a short piece on the LJ site
(www.linuxjournal.com/article/7239) that outlined which presidential campaign
Web sites were using open-source components. This seems particularly
relevant given the significance of the Internet to the 2004 presidential race. As
Howard Dean's early campaign demonstrated, making the Internet key to an
organization can turn a lot of separate grassroots initiatives into a large and
powerful networked movement.

By the time you read this month's On the Web, we'll know who the 2004
Democratic presidential candidate is. Although this is a big story, Doc continues
to be interested in the story behind the story—how the campaigns are
adopting and adapting open-source philosophy and technology. He describes
his mission as learning:

what IT workers in the pressure-cooker conditions of
political campaigns might teach IT professionals
everywhere about the resourceful use of Linux, free
software and open-source development methods.
What works best? What doesn't work at all? How do
you develop and apply solutions to problems all over
the country with widely varying participants and
circumstances?

Prior to LinuxWorld New York in January 2004, Doc traveled to the Vermont
headquarters of the Dean campaign. As he writes in “Lessons from the
Campaign Pressure Cooker” (www.linuxjournal.com/article/7372), he
encountered both open-source software and what former Dean Campaign
Manager Joe Trippi called “open-source politics”. Joe used to work for Ian

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.linuxjournal.com/article/7239
http://www.linuxjournal.com/article/7372

Murdock, cofounder of Debian. Essentially, the Dean campaign used its
extensive grassroots support to create its own networked market. How far this
market takes Dean is unknown right now, but its success in 2003 seems to
indicate that a new phase of electoral politics has begun.

Perhaps this shift in the campaign landscape is connected to the shift taking
place in the larger realm of supply and demand. In “The New Economy Hack:
Turning Consumers into Producers” (www.linuxjournal.com/article/7345), Doc
discusses how “consumerism is a red herring....It isn't about what you and I
invent and contribute to the marketplace. It's about what Sony and Panasonic
and Nikon and Canon produce and distribute through retailers for us, the mass
market, to consume constantly.” Some new computer technologies and the
overall continuing drop in cost of computer equipment, however, are allowing
users to have more control over what they create and use in their daily lives.
Doc traces all this back to the Linux economy hack, “because Linux is something
that happened when demand started to supply itself”.

Whether looking at political campaigns and the importance of the Internet,
media coverage and the rise of the blog or consumer electronics and the
increasing availability of software that lets users make their own music, it's
clear that the do-it-yourself freedom at the heart of open source is spreading. If
you'd like to keep up with Doc's findings and musings, subscribe to his biweekly
SuitWatch newsletter at the Linux Journal home page.

Heather Mead is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/7345
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Our experts answer your technical questions.

 AOL for Linux?

I have a dual-boot (GRUB) setup with Red Hat Linux 9.0 on one partition and
Windows XP Professional on another. I also am running AOL 9.0 broadband
software for my ISP. Is there a driver for the AOL Broadband Blaster modem
that I can use to run Red Hat 9.0 with Internet services through my AOL
broadband connection? I want to avoid changing Internet services and buying a
new DSL modem, but I can't get Red Hat to see the Broadxent modem, and
Linux doesn't recognize my AOL broadband software.

—
Natosha

NZimardo@aol.com

You cannot run AOL's software under Linux, so you will not be able to access
AOL services through traditional means. However, for general Internet access,
many Broadxent DSL modems have both USB and Ethernet interfaces. If you
can switch to the Ethernet interface and install an Ethernet card in your PC, you
should be able to access the Internet from both operating systems. If your DSL
modem does not have an Ethernet interface, you need to replace it with either
a USB device that Linux supports (such as from Alcatel or ECI) or a device with
an Ethernet interface. If you cannot get AOL to agree to allow you to do this,
you should consider an alternate service. Linux desktop deployments are
becoming more common today, especially with the efforts of Lindows and
other distribution vendors working with retailers to package their products into
inexpensive solutions.

—
Chad Robinson

crobinson@rfgonline.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:NZimardo@aol.com
mailto:crobinson@rfgonline.com

 Collecting the Ultimate Linux Box

I have followed Glenn Stone's “Ultimate Linux Box” series on the Web and in
print and decided to build my own version. I have found the economical way is
to build it piece by piece; I buy a piece every month and put it away until I get all
the pieces, then I'll put it together. After doing a lot of research I came to the
conclusion that 1) modular is the way to go, and 2) 64-bit is the future. I have
thus elected to build an AMD Opteron single CPU system running Mandrake
Linux, 9.2/64. I am thinking of buying the ASUS SK8N Motherboard (2GB of
RAM, twin Maxtor 120GB SATA HD, 3.5 floppy, 5.25 floppy (legacy work), CD-RW
(48x12x48x) and, with luck, a DVD player. Is this a problem board on Linux? If it
really is a problem board, can you suggest a solid alternative board I could buy?

—
S.W. Bobcat

swbobcat@hotmail.com

If you have problems with this motherboard, it is more likely to be a driver
support issue than anything else. Most board-related issues can be resolved
with simple workarounds, such as the noacpi boot option. This motherboard in
particular was used in several SPEC.org benchmark tests in 2003, so I doubt
there is an issue that cannot be resolved in some fashion.

However, I would advise you to consider your 64-bit choice carefully. Unless
you are doing some serious rendering or mathematical computation, the 64-bit
platform is unlikely to provide you significant benefit. In fact, you may find that
some applications run slightly more slowly; many benchmarks today are
showing that unless a workload is optimized for a 64-bit platform, it does not
perform to its full ability. 64-bit computing ideally is suited for a variety of
computational workloads or for things that require wider integers for indexing
facilities, such as databases. Descent 3 won't run any faster.

There is no question that many environments can benefit from this change, as
long as you recompile everything to support it. Is yours going to be one of
these? On the other hand, the Opteron itself is a great processor, and if you are
making the choice based on HyperTransport, for instance, then kudos!

—
Chad Robinson

crobinson@rfgonline.com

mailto:swbobcat@hotmail.com
mailto:crobinson@rfgonline.com

I'm afraid, I can't agree with your modular assertion. PCs have become so
complex that you take the risk of ending up with incompatible chipsets or a
system with subtle bugs. This doesn't mean you will, but as PCs have become
more than a thousand times faster, the mix-and-match approach is a lot more
likely to hit some subtle timing incompatibility between two components. As for
64-bit being the future, yes, although you are not likely to need 64 bits for what
you are going to do. A wait-and-see approach for 64 bits wouldn't be
unreasonable in your case (and in the meantime, you could buy a 32-bit
system). In addition, you will not end up with a working system before you buy
and assemble the last piece, and even then, it's only if you are lucky and
everything does piece together. You will not only pay more for all the
components bought separately, but the price of the first components you
bought will have dropped by the time you buy the last one. I really recommend
that you buy a prebuilt system unless you are really looking to do hardware
tinkering and are ready to swap components and meet potential
incompatibilities.

—
Marc Merlin

marc_bts@google.com

It's better to save up for the parts and buy them all at once. That way the
warranty for the first part isn't ticking away while you collect the rest. And, as
Marc points out, PC hardware does tend to get cheaper over time. If you're
building your own Linux system, explore the Web sites of Linux system vendors
and see what hardware they use. It's likely to be stable and compatible.

—
Don Marti

info@linuxjournal.com

 How to Use #include

I am trying to access ports using check_region() . I have included the file /linux/
resource.c to do this. But when I try to compile the program, I get the following
error:

In file included /usr/include/linux/sched.h
 /linux/resource.c
/usr/include/linux/timex.h :field "time" has incomplete type

where time is of type struct timeval declared in the file timex.h.

mailto:marc_bts@google.com
mailto:info@linuxjournal.com

Kindly tell me the possible reason and its solution.

—
Ashutosh Sharma

catchwavesin@yahoo.com

resource.c is a source code file that contains all of the function
implementations, including the one you are trying to use. I believe you should
be including <linux/ioport.h> instead, which contains the definitions for these
functions, not the implementations.

—
Chad Robinson

crobinson@rfgonline.com

 Big Pictures from The GIMP?

I use The GIMP for almost everything in picture editing, and I have created
some large pictures, say 24 × 24 inches. I basically use them as first-draft
examples before finally painting my subject on canvas. I have an HP 5650
printer that obviously cannot print such large paper sheets. So the results are
that only the upper-left corner of the picture is printed out. What I'm looking for
is the ability to print the entire picture in its correct size but spread out on
several 8 × 10 sheets of paper that I then can paste together to create the
correctly sized pictures. Does any such software exist in the Linux world, or
must I purchase HP's Plotter to achieve this result at a greater cost?

—
Paul Godin

linuxstuff@istop.com

Perhaps I'm confused, but your problem sounds as though it has a simple
solution. You simply need to crop successive sections of the image so you can
print one tile at a time. You can do this manually with The GIMP. You also can
create a script to do this automatically, using the ImageMagick toolkit. There is
a tool called convert(1) in this suite that not only allows you to convert images
to a format more suitable for printing (such as PostScript or PCL) but also to
crop portions from the image. See the man page for this application for details,
but I believe you probably want to use the -crop option.

mailto:catchwavesin@yahoo.com
mailto:crobinson@rfgonline.com
mailto:linuxstuff@istop.com

—
Chad Robinson

crobinson@rfgonline.com

You can print your file in PostScript and then use this program to split it onto
multiple pages: www.ctan.org/tex-archive/support/poster. It also prints the
marks you need to cut the pages and paste them together.

—
Marc Merlin

marc_bts@google.com

What you are trying to do is called a mosaic. There are many tools to do
mosaics with The GIMP; take a look at registry.gimp.org. Also, bear in mind that
your printer may have blind printing areas where it is not possible to print,
perhaps in margin areas, so take this into account when doing the mosaic. You
also may need to do some traditional cutting on each sheet of paper.

—
Felipe Barousse Boué

fbarousse@piensa.com

 Making Red Hat 9 into a Firewall

I am trying to set up a box as a firewall so routing is enabled. I have two
Ethernet cards for this box. I am running FWbuilder 1.1.1 on Red Hat 9. My
question concerns the kernel route tables. The situation is the external address
is on eth0 192.168.1.2, and the internal address is on eth1 172.10.10.252. My
default gateway on eth0 should be 192.168.1.1; however, the kernel makes the
default 192.168.1.2 and will not release this route. This now has routed to the
192,168.1.0 side, but it stops at eth0 and cannot find a way to 192.168.1.1. The
internal side works great, though. Besides rebuilding the kernel, how can I set
the default gateway to be 192.168.1.1?

—
Joe Golden

mailto:crobinson@rfgonline.com
http://www.ctan.org/tex-archive/support/poster
mailto:marc_bts@google.com
http://registry.gimp.org
mailto:fbarousse@piensa.com

jgolden3@csc.com

Edit the /etc/sysconfig/network-scripts/ifcfg-eth0 file and add a line like
GATEWAY='192.168.1.1', and then restart your network with the service
network stop/service network start commands or reboot your machine. This
fixes the default gateway route of the eth0 card to 192.168.1.1.

—
Felipe Barousse Boué

fbarousse@piensa.com

 Switching between Running X Sessions

How can I have multiple X sessions running at the same time? That is to say, if
I'm logged in as root and also log in on Ctrl-Alt-F2 and give the command
startx -- :1 to fire up X, everything works fine. If I go back to Ctrl-Alt-F7, all
is fine there too. But, when I go to Ctrl-Alt-F2 again, X has crashed there, but it
still is up on F7. Is there some command that I can give so X stays up on F2
when I'm going back and forth?

—
Bjarni Valsson

bjarniv@hotmail.com

X does not run on F2 (pty 2). Each X instance you start creates its own pty,
hence the switch to pty 7. If you go back to pty 2, you actually can put X in the
background (Ctrl-Z, then type bg) and continue using that console for other
tasks. If you start up another copy of X, and X already is running, it creates a
new pty (now 8, in this case). You must then press Ctrl-Alt-F8 to switch to that
copy of X. Remember, X is a user-space application. Two running X processes
should not interfere with one another unless you are doing something odd with
your hardware; certain video card driver settings might cause trouble.

—
Chad Robinson

crobinson@rfgonline.com

mailto:jgolden3@csc.com
mailto:fbarousse@piensa.com
mailto:bjarniv@hotmail.com
mailto:crobinson@rfgonline.com

 DHCP under Knoppix but Not Debian

I recently installed a Linksys WPC11 wireless card on an older Gateway 433
Celeron machine running Debian Woody 3.0. The card works fine only after I
log in as root and type pump -i wlan0. I followed the instructions to the
letter and even modified the specified files to read DHCP as the instructions
stated. The interesting part of this equation is that I ran Knoppix on the same
machine out of curiosity, and Knoppix correctly identifies the card, and it
automatically gets an IP address. Any idea what I can do to make this card pull
an IP automatically?

—
Wes Reneau

wes@rose.net

Woody 3.0 is an exceedingly old version of Debian (mid-2002), as far as Linux
distributions go. You should consider upgrading to the latest distribution.
Knoppix is based on Debian, but you are undoubtedly using a fairly recent
version. This is probably nothing more than an issue with one of your boot
scripts, but without viewing them it's difficult to tell.

—
Chad Robinson

crobinson@rfgonline.com

 “dump”ing an ext3 Filesystem?

I regularly back up all my machines using amanda and dump. The backup is to
a dds-3 tape drive on a Red Hat 7.2 machine (servred72). I upgraded a Debian
3.0 machine to sarge and had some problems. I wanted to amrestore on the
Debian 3.0 machine, but amrestore requires root privilege to run. I was
prevented from the restore because of security mechanisms. The appropriate
amandahosts files were modified to include root. Root access was prevented in
the LAN. Two questions: 1) dump works on only ext2 filesystems. Is there a
newer version to support the journaling filesystems? 2) What could I do to relax
security temporarily and allow amresotre to work as root across the LAN?

—
Alan Polinsky

polinsky@acm.org

mailto:wes@rose.net
mailto:crobinson@rfgonline.com
mailto:polinsky@acm.org

A dump that's recent enough should work with ext3, because ext3 is ext2 with a
new feature flag on the filesystem and a special hidden inode with the journal,
which you can but don't need to backup. You do need to quiesce the journal
when you take a snapshot for backup, but dump has support for that, as hinted
by the sf.net Project page, sourceforge.net/projects/dump, which says “Dump/
Restore ext2/ext3 filesystem backup”.

—
Marc Merlin

marc_bts@google.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://sourceforge.net/projects/dump
mailto:marc_bts@google.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 New Products

FogBUGZ 3.0 for UNIX, Escalade 8506-MI SATA Controllers, Sun Java Desktop on
TALIN Notebook and more.

FogBUGZ 3.0 for UNIX

FogBUGZ 3.0 is a Web-based software project management system. Created to
be a database of cases, which can be feature requests, traditional bug reports
or customer e-mails, every case is assigned to one person who must resolve it
or forward it to someone else. Cases can be prioritized, documented, edited,
estimated, searched and more. Cases can be entered by e-mail or through the
Web interface; there are no required fields, and anyone can edit a bug report.
Screenshots, sample files and almost any type of document can be attached to
a case in FogBUGZ, and Unicode is supported so bugs can be entered in any
language. In addition, FogBUGZ can be integrated with source code managers,
such as VSS, CVS, Vault and Perforce, and bidirectional links between check-ins
and bugs may be maintained. FogBUGZ 3.0 for UNIX can run on Red Hat, SuSE,
Mandrake, Debian and FreeBSD.

Fog Creek Software, 535 Eighth Avenue, 18th Floor, New York, New York 10018,
866-364-2733, www.fogcreek.com/FogBUGZ.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/120/7363f1.large.jpg

Escalade 8506-MI SATA Controllers

The Escalade 8506 Series Multi-lane Internal (MI) Connector RAID controllers
are an integrated connector system that combines four SATA ports into a single
connection on the controller side and a single connector on the backplane. The
Multi-lane Controllers support up to 12 Serial ATA drives on a single PCI card,
enabling up to 3TB of storage on a half-length card (dependent on drive
capacity). Employing Escalade's StorSwitch switched architecture, the 8506-MI
enables Serial ATA's point-to-point architecture performance of up to 1.5GB/sec
per port. The MI Controller offers RAID 0, 1, 10, 5 and JBOD support and is 64-
bit/66MHz PCI-compliant.

3ware, Inc., 455 West Maude Avenue, Sunnyvale, California 94085,
877-883-9273, www.3ware.com.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7363f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7363f1.large.jpg

Sun Java Desktop on TALIN Notebook

Tadpole Computers announced that it now is offering the Sun Java Desktop
System on Tadpole's newest family of notebooks, the TALIN series. Tadpole
notebooks offer users easy migration, integrated security mechanisms and the
ability to maintain existing UNIX, Java and Linux applications while
interoperating with office documents and back-end services. The Java Desktop
System includes GNOME, StarOffice, Mozilla, Evolution, Java 2 Platform and a
Linux OS. TALIN 15, now available, has a P4 processor with speeds of up to
3.0GHz, 128MB to 1GB of SDRAM, a 15" SXGA+ screen, 3-D graphics support
and integrated Wi-Fi. Other TALINs to be released include the 100X, weighing
3.5 pounds, and a 17" screen model.

Tadpole Computers, Inc., 20245 Stevens Creek Boulevard, Cupertino, California
95014, 800-734-5483, www.tadpolecomputer.com.

Roku HDTV SDK

Roku, maker of the HD1000 high-definition digital media player, recently
released a software developer's kit (SDK) for the creation of media applications
for high-definition television. The Roku SDK allows developers to create
applications for the Roku HD1000 in the C and C++ languages. Developers can
use the SDK to access television-centric user-interface elements, media
streaming, network and memory card access and device control. In addition,
custom installers can control the Roku HD1000 without the SDK by using simple
ASCII control commands. The HD1000 is completely controllable from the serial
port, Ethernet port or scripts running on the device. The SDK is available for
download at www.rokulabs.com/developers.

https://secure2.linuxjournal.com/ljarchive/LJ/120/7363f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7363f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/120/7363f2.large.jpg
http://www.rokulabs.com/developers

Roku, 399 Sherman Avenue, Suite 12, Palo Alto, California 94306, 866-400-7658,
www.rokulabs.com.

LIPZ4 Soft Phone

Zultys Technologies' LIPZ4 is a freely available software phone that allows users
to make and receive phone calls from their computers, without the need for
telephone handsets. Based on open standards, the LIPZ4 is compatible with
any IP telephony system using Session Initiation Protocol (SIP). It supports four
call appearances, instant messaging, hold, transfer, forward, redial and many
other features. The LIPZ4 can store the last 32 incoming and outgoing phone
numbers. Additional features, including conferencing, compression (G.729) and
backup server specification, are available by purchasing a license from Zultys.
The advanced encryption standard (AES) is used for network security. LIPZ4 can
be downloaded from www.lipz4.com.

Zultys Technologies, 771 Vaqueros Avenue, Sunnyvale, California 94085,
408-328-0450, www.zultys.com.

CoreModule 420 PC/104 SBC

Ampro's CoreModule 420 PC/104 SBC is a migration product designed to keep
486-based embedded systems in production through 2010. The I/O addresses
and IRQ mappings allow it to be configured to match many legacy system
setups. In addition, the memory hole is configurable for legacy PC/104
peripheral cards. The CoreModule 420 supports four serial ports (two for
RS-485), along with eight general-purpose I/O (GPIO) pins, an EPP/ECP parallel
port, one USB 1.1 port and a high-resolution 2-D video controller with CRT.
Interfaces are provided for PS/2 keyboard and mouse, floppy and Ultra/DMA 33

http://www.lipz4.com

IDE disks, 10/100BaseT Ethernet and TFT flat panels. CoreModule 420 provides
64MB of soldered SDRAM, along with a byte-wide socket for a DiskOnChip 2000
bootable Flash drive and a Type II CompactFlash socket.

Ampro Computers, Inc., 5215 Hellyer Avenue, Suite 110, San Jose, California
95138, 800-966-5200, www.ampro.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/120/toc120.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Departments
	Real-World PHP Security
	Xavier

Spriet
	register_globals
	Cross-Site Scripting
	GET Variables
	SQL Injection
	Encryption
	Assertions
	Data Flow
	Safe Mode

	SPF Overview
	Meng
 Weng
Wong
	Worms, Viruses, Joe-Jobs and Envelope Sender Forgery
	Sender Authentication with SPF
	SPF by Example
	Extensibility
	Protecting Subdomains and MX Servers
	Traveling Mailman and the Forwarding Problem
	Stopping Spam: It's Part of the Solution
	Why Do People Use SPF?
	Adoption

	Security Distribution for Linux Clusters
	Ibrahim

Haddad
	Miroslaw

Zakrzewski
	The DSI Project
	The Distributed Security Module
	Network Buffer Handling
	Adding Network Security Hooks
	IP Options
	IP Options in DSM
	DSM Network Hooks
	Performance Measurements
	Conclusion
	Acknowledgement

	Constructing Red Hat Enterprise Linux v. 3
	Tim

Burke
	What Is an Enterprise Distribution?
	Requirement Gathering
	Red Hat Enterprise Linux v. 2.1 Maintenance Pulls
	Red Hat Enterprise Linux v. 3 Kernel Development
	Late-Breaking Features
	Testing
	Conclusion

	Samba Logging for Audit Trails
	Edward

Kablaoui
	Audit Trail Requirements
	Downloading and Configuring Samba
	Modifying Samba Source Code for Audit Trails
	Updating User Passwords
	Future Work
	Conclusion

	Writing a Simple USB Driver
	Greg Kroah-Hartman
	The Hardware Protocol
	Which LED Is Which?
	A Kernel Driver
	LEDs in Action
	Is There a Better Way?

	At the Forge
	COREBlog
	Reuven
 M.
Lerner
	What Is a Weblog?
	COREBlog
	Customization
	Syndication
	Conclusion

	Kernel Korner
	The Hidden Treasures of iptables
	Chris Lowth
	Introducing the POM
	Bits of String
	Fewer Rules with mport
	Time-Based Rules
	Getting Bogged Down—Tar Pits
	Randomizing
	A Lot More Where They Came From
	Sources of Wisdom
	Installing New iptables Modules
	Conclusion
	Acknowledgement

	Cooking with Linux
	François, Can You Keep a Secret?
	Marcel Gagné

	Paranoid Penguin
	Application Proxying with Zorp, Part II
	Mick Bauer
	Assumptions
	The Scenario
	Configuring a Dummy Interface
	iptables Configuration
	Configuring Zorp's Instances
	Configuring Zorp's Application Proxies: policy.py
	Conclusion

	Linux for Suits
	Showtime
	Doc

Searls

	EOF
	SOLIS, a Brazilian Free Software Cooperative
	Cesar Brod
	Regional Development

	From the Editor
	Security One Step at a Time
	Don Marti

	Letters
	KDE Baby
	SMART and Disk Errors
	Questions for Robert Love on I/O Scheduler
	English Lesson
	Flaky Entertainment System
	Compatibility List?
	Table Fix for Work-Flow Article
	Photo of the Month
	Lindows: Good install, but Support Needs Work
	Big News at Linux Vendors?
	LJ Discovers IT's “Dark Matter”
	Errata

	UpFront
	diff -u: What's New in Kernel Development
	Zack Brown

	APG and TkAPG: www.adel.nursat.kz
	David A. Bandel

	convertfs: tzukanov.narod.ru/convertfs/index.html
	David A. Bandel

	Filelight: methylblue.com/filelight
	David A. Bandel

	Hex Puzzle 22: ibiblio.org/pub/Linux/games
	David A. Bandel

	LJ Index—April 2004
	JS Calendar: dynarch.com/mishoo/calendar.epl
	David A. Bandel

	liamtog: www.liamtog.org
	Ian Kluft

	The Godfather of SOLIS
	Cesar Brod

	rsnapshot: www.rsnapshot.org
	David A. Bandel

	They Said It
	User-Mode Linux: user-mode-linux.sourceforge.net
	David A. Bandel

	From the Publisher
	Ten Years of Linux Journal
	Phil Hughes
	What We Did Right (and Wrong)
	Building a Community
	World Domination
	What's Next?

	On the Web
	Power to the People
	Heather Mead

	Best of Technical Support
	AOL for Linux?
	Collecting the Ultimate Linux Box
	How to Use #include
	Big Pictures from The GIMP?
	Making Red Hat 9 into a Firewall
	Switching between Running X Sessions
	DHCP under Knoppix but Not Debian
	“dump”ing an ext3 Filesystem?

	New Products
	FogBUGZ 3.0 for UNIX
	Escalade 8506-MI SATA Controllers
	Sun Java Desktop on TALIN Notebook
	Roku HDTV SDK
	LIPZ4 Soft Phone
	CoreModule 420 PC/104 SBC

